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Abstract—Software systems typically consist of many lines of
source code organized in several files hierarchically structured
into directories and packages. Since the code is the key data
in software development, in many scenarios an overview of it is
required, in particular for similar code passages. In this paper, we
investigate the visual analysis of source code similarities for local
as well as global code passages. To this end, we first compute all
subsequence occurrence frequencies (support metric) and relative
occurrence frequencies (confidence metric) in local as well as
global code regions. The resulting textual data attached by its
occurrence values is displayed in a triangular matrix. Several
interaction techniques are integrated in our visualization tool
which are illustrated in the corresponding case study illustrating
similarities in source code written in Assembler consisting of
10,641 characters.

I. INTRODUCTION

Today’s software systems are large and typically developed
over time spans of several years by many developers. This pro-
cess produces vast amounts of data of various types. The key
data in software development is the source code itself since it is
responsible for a well-designed and properly running software
in the end. Analyzing this textual data is a challenging task
that may be supported by visualization techniques benefiting
from the perceptual abilities of the human viewers due to the
strengths of their visual system and fast pattern recognition.

To understand code, we usually have to view it directly.
However, if someone is just interested in quickly finding
similarities in large amounts of code globally as well as locally,
text scrolling interaction alone is very time-consuming and not
useful any more. An algorithmic solution is required that is
able to uncover similar code regions; but the output data of
such an algorithm is already that large that an exploration of
it on a pure textual basis is again very difficult.

In many scenarios, we wish to first obtain an overview of
similar code fragments and their regions of occurrence. To
achieve this goal, we propose an approach that consists of two
separate components: a source code similarity analyzer and a
visualization that shows the similarity results together with
the computed occurrence frequency values and the regions
of those occurrences by either a pixel-based approach or
by overplotting the display with color-coded most frequently
occurring textual code fragments.

Generally, there are important questions to a software de-
veloper concerning source code similarities, focusing on either
the complete code or parts of it. The following questions can
be answered by our visual analysis technique:

o Code regions: Which regions in the source code contain
many similar textual patterns? Are those most frequent
code fragments occurring more locally, more globally, or
both? Are there any empty regions?

o Code fragment lengths: What are the lengths (number of
characters) of the frequently occurring code fragments?
Are those equally distributed or are there regions con-
taining longer frequently occurring code fragments while
others contain shorter ones?

e Occurrence frequencies: If code fragments occur fre-
quently, what are the occurrence frequency and relative
occurrence frequency values? Are there any regions with
similar values?

o Similarity distributions: How are the most frequently
occurring code fragments distributed? Are there any dif-
ferences in the regions or also between different code
fragment lengths?

o Code comparisons: If there are several code files, are
the visual patterns for the code fragment frequencies
similar or do those behave totally different? Are there any
differences or commonalities among many subsequent
revisions of the same code fragment?

We illustrate the usefulness of the technique and its inte-
grated interaction techniques by applying it to source code
written in Assembler that contains 10,641 characters.

II. RELATED WORK

When analyzing software systems, their structure, behavior,
and evolution are of importance [1]. However, regardless of
what is analyzed, source code can be considered as the key
data for static software and also during software development.
While the complete system is evolving, programmers are
constantly changing code by adding, deleting, or replacing
code passages. In some scenarios, it also comes to a more or
less copy-and-paste behavior during implementation in which
already implemented code is duplicated and added to a totally
different part of the project or sometimes even in the same
source code file. Such code clones [2] are of special interest for
software development since those are problematic in further
development and for reliably maintaining a growing project.

Code clone detection in general and the visualization of
its results is a difficult discipline and has been researched
intensively [3], [4]. The above mentioned scenario of copy
and paste is the easiest one to uncover because the code is
not changed but just copied as it is. More complex scenarios
occur when the code is consistently changed, for example,



when variables are renamed or functionality is changed while
still semantically doing the same as before. Such source code
similarities are not in the focus of our present work, but
instead, we are more interested in visually presenting all code
fragments locally as well as globally which are direct multiple
copies from other code regions. Such an overview is important
to see where possible similarities occur in the code that then
have to be analyzed further.

There is already some research on presenting source code
by first providing an overview. The SeeSoft tool [5] for
example, uses a line-based color-coded visualization of the
code lines still showing the pretty printed structure [6], [7]
of the code and additional information such as the age of the
code. Lommerse et al. [8] propose a visual code navigator in
which three views are provided showing large source code of
software projects from three different perspectives: a symbol
view, a syntactic view, and an evolution view. What is missing
in this tool is a view showing source code similarities.

Beck et al. [9] visually augment source code by additional
information such as performance data or they [10] use word-
sized graphics for monitoring numeric variables. Although
this integrates additional views on this textual data, it is
still difficult to visually analyze the code for pure textual
similarities. Moreover, this additional information requires a
certain amount of display space and makes it problematic to
show larger code passages as an overview, which we refer to
as visual scalability issues. The analyst still has to interactively
scroll the code to visually compare the values, but as a benefit
the code is shown in its original form as pretty printed text.

Changes done to source code during its evolution are also
analyzed and visualized. For example, Voinea et al. [11], [12]
use a line-based representation to show the evolving code
structures. However, in their work they try to give a global
view on the code changes but do not consider the visual
analysis of code similarities for a single version of it. Also
the CodeFlows visualization [13] is based on showing source
code evolution, but on a more structural basis.

In the field of bioinformatics, research on text sequence
comparisons is of special interest, allowing one to identify
common subsequences of DNA strands for example. Multiple
sequence alignment techniques [14] are used to find out
common substructures that are then visualized as color-coded
lines of differently large sizes [15]. However, in this approach,
several DNA strand subsequences are not compared several
times with all the others, which is required in our work. The
dot plot matrix [16] is a popular visualization technique using
color-coded pixels to indicate where two sequences contain the
same nucleotides. This technique is powerful, but as a draw-
back only single characters are compared and not differently
long substrings. Moreover, occurrence frequencies and relative
occurrence frequencies [17], [18] cannot be displayed.

III. DATA MODEL AND TRANSFORMATION

In this work, we deal with textual data, i.e., source code
generated by using any programming language. In this section,
we first mathematically model this kind of data and then show

how the data is transformed into a list of code fragments, code
regions, and attached frequency values.

A. Source Code

Source code is a finite sequence of n € N characters
S:= {G],...,Gn}

where each o; is an element of a finite alphabet X, i.e.,
o; € L,V1 <i<n. In the context of this work, we do not
treat special characters such as ‘empty space’ or ‘carriage
return’ differently from the others but we, instead, just read
all characters in the same way, i.e., source code builds one
long sequence of elements that is taken as input for our
preprocessing algorithm.

In the visual representation of source code, some characters
are already treated differently, e.g., source code is not written
in one single line but starts in separate lines in order to visually
represent the code structure more clearly. This concept is often
referred to as pretty printing [6], [7] in programming which
typically illustrates a hierarchical organization [19], [20]. Our
work is freed from those structural aspects and hence, can
easily be applied to any kind of code, even if those pretty
printing rules are not used during implementing code.

B. Code Fragment Frequencies

Before starting the visualization tool, source code has to
be preprocessed first which is then stored internally by the
data analysis algorithm. This means, the source code is only
analyzed once, making the visualization technique interactive.

The data analysis algorithm takes the sequence of characters
S as input and first computes a list of all possible occurring
substrings in the given sequence S. From the precomputed list,
occurrence regions are computed by calculating start and end
indices of the found regions. In the same algorithm loop, the
occurrence frequencies are computed, which are later divided
by the number of characters contained in each region, allowing
us to compute the relative occurrence frequencies.

The final output of the preprocessing algorithm is a list of
k € N subsequences L:= {S},...,S;}, where each subsequence
S; is attached by another list L; containing the start and end
indices of the corresponding occurrence regions together with
both values for the occurrence frequencies in these regions:

L,‘ = {11,...,1,,[.}

where each information quadruple can be described as

L= (sj,js fjar> Fiver)

in which s; expresses the start index of that code region,
e; the end index, f;, the occurrence frequency (support),
and fj , the relative occurrence frequency (confidence). The
support metric values are computed by counting the number
of word occurrences in that region, whereas the confidence
metric values can be obtained by the support divided by the
maximal number of possible occurrences of that substring in
that region.



IV. VISUALIZATION TECHNIQUE

The visual analysis of source code data comes in two sepa-
rate steps. The preprocessing step consists of the text compar-
isons while simultaneously computing occurrence frequencies
and relative occurrence frequencies, which is described in
Section III. The preprocessed output data is then used as input
for our interactive visualization tool; here, we still preserve a
link to the original raw source code data to later facilitate
details-on-demand and a direct linking of the visualization of
the preprocessed data to the source code.

A. Visual Encoding of Source Code

In our approach, we need to visualize the code in a line-
based representation because we need one single representative
element on a horizontal line for intuitively attaching the
triangular matrix with the additional information about the
occurrence regions as well as the occurrence frequencies.

This simple visualization of the source code line can be seen
as color-coded horizontal line on top of each triangular matrix.
Each character is visually mapped to a unique color from a
predefined color scale, i.e., it is treated as categorical data. The
color coding is one straightforward way to visually encode
similar code regions; however, due to perceptual problems
and the fact that only a limited number of color hues can
be separated by the human eye and the visual system [21],
we have to add the triangular matrix to achieve a better
representation of the similarities.

The visual representation can be used as interaction support
when selecting code regions for filtering and zooming the
triangular matrix. Moreover, the selected code region can be
represented as original view on the source code in its pretty
printed form. Brushing-and-linking features between the code
and the similarity matrix and vice versa are possible, which
is helpful for putting the visualization in context to the real
code.

B. Triangular Matrix

The visual design of our approach uses a triangular matrix
to encode support and confidence metric values for each
substring and its similarities in several regions in a source code
fragment—similar to the approach used in the saccade plots
for displaying eye movement saccades [22]. Such a scenario
is illustrated in Figure 2 for a larger example with real code.
Here, we can see source code represented as a color-coded
compressed line on the top which is used as basis for similarity
analyses. The font sizes visually represent the support metric
values of the text fragments under observation (in this case,
‘add’, ‘and’, and ‘sub’), whereas the color coding gives a hint
about the confidence metric values.

The visual design of our approach is illustrated in Figure 1;
the design can be described as follows:

« By placing a representative substring in the triangle, a
corresponding subtriangular region is spanned that indi-
cates the explored region in the source code.

source code

N

(2,0.18)

Fig. 1. An illustrative example of our approach showing similarities of
substrings in the text ‘source code’.

o Gray-colored guiding lines can be added to the diagram
to support the user to understand the region under explo-
ration.

o We place substrings with higher confidence values on
top of the others because the focus is on the relevant
substrings.

« We visually encode one metric value in the color of the
text labels, while the other is mapped to the font sizes.

The triangles are unique representations for each region,
which can intuitively be used to interpret the visualization. The
text-based diagram is similar to word clouds, but the position
of each text fragment is fixed in this representation. In standard
word clouds, a sophisticated layout algorithm can be used to
produce a clutter-free visualization. It may be noted that color
coding and font size can be exchanged interactively and it can
be switched off completely.

C. Interaction Techniques

Although we provide the viewer with an overview first,
our visualization technique benefits from several important
interaction features with which one can easily manipulate the
views and browse in the data. This supports deriving visual
patterns that must again be remapped to the original data in
order to derive meaningful insights. Our tool is designed in
a way following the principles postulated in the Visual Infor-
mation Seeking Mantra by Shneiderman [23]: Overview first,
zoom and filter, then details on demand. For the interaction
techniques, we were inspired by the work by Yi et al. [24], in
which seven categories of interaction principles are described
together with specific application examples.

+ Select — mark something as interesting: The viewer is
able to highlight substrings as being interesting for future
investigations. This principle helps keep track of specific
substrings while the view is changed. The highlighted
substrings can still be perceived even if the view has
changed and consequently support a better analysis of
contextual information.
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Fig. 2. A source code fragment with several thousand characters. Searching for occurrence frequencies of the words ‘add’, ‘and’, and ‘sub’ results in

color-coded cluster-like word regions similar to word clouds.

« Explore — show something else: In particular, for local
regions the explore interaction is of interest. One pans
to another local region to see if there are similar visual
patterns. Also parameter/slider changes have an impact
on the view and may add additional substrings or some
others disappear.

Reconfigure — show a different arrangement: In
the initial triangular matrix, all substrings are visually
represented at the apex of the triangle that spans the
analyzed subregion of the source code. Guiding lines can
be added to support finding the spanned region in the
code. The viewer is able to rearrange the positions of
the displayed substrings by using mouse drag-and-drop
operations. This would lead to misinterpretations when
the triangle guiding lines would not be shown any more
but also unclutters the display.

Encode — show a different representation: A different
representation of the data can help the user see the
data from a different perspective. This is supported by
either using a color-coded pixel-based representation or
by showing the complete substring texts centered to the
respective triangle apex. Also a view on the original pretty
printed source code can be requested using the same color
coding for the visualized code fragments.
Abstract/Elaborate — show more or less detail: The
user can zoom into local regions. Then, the focus is put
on the shorter code fragment, which helps the user see
more details about this specific piece of code. Overview
and detail are supported by showing a large triangle for
the detail view and a smaller one for the overview in
which the detailed one is highlighted.

« Filter — show something conditionally: Filter functions
can be applied to either the text lengths, the occurrence
frequencies, or the relative occurrence frequencies. Also
a filter function for specific text patterns can be applied,
leading to a representation where only the substrings are
displayed containing the filtered text. This can be done
in the data preprocessing step and also interactively in
the visualization. The filtered out substrings are either
removed from the display or shown as grayed out texts
for contextual information.

Connect — show related items: Multiple views can
be displayed, for example smaller detail triangles and a
larger context with highlighted details, while brushing and
linking between both can be applied. Real source code
can be displayed in its original form when a source code
fragment is selected.

V. CASE STUDY

To illustrate the usefulness of our source code similarity
visualization we applied it to source code written in Assem-
bler, a low-level programming language for a computer. To
illustrate the algorithmic and visual scalability of our approach,
the source code is first preprocessed and the final output of this
algorithm is visualized as color-coded triangle representations.
For this reason, we analyzed source code consisting of 10,641
characters. We first compare the code fragments for similarities
and show the output data. Since the resulting figure contains
very many characters of length one, two, and three, we decide
to filter out those from the beginning.

Figure 3 illustrates all code fragments of lengths between
5 and 8 which occur at least twice in the Assembler code. In
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Fig. 3. Showing all code fragments of lengths between 5 and 8 occurring at least twice in the Assembler code containing 10,641 characters in total. The

occurrence frequency is filtered for values between 2 and 82, where 1,140 is the maximum value. There is no restriction on relative occurrence frequencies.

the figure, we see that there are many empty regions in the
diagram. But globally there are many similar words, which
can be seen by the cluster of words close to the apex of the
largest triangle. Those are colored green, indicating that their
relative occurrence frequencies are not that large.

We can also see an outlier in this visualization. The code
fragment ‘,;ymml’ occurs very frequently in the rightmost
larger code region. By the orange color coding, we can derive
that it has a higher relative occurrence frequency than many
other words. Moreover, it is the only frequently occurring word
in this region, which is a strange phenomenon. Looking in
the corresponding source code, we see that several variables
are used, while many of them starting with ‘,ymm1’ followed
by another number, which leads to a higher frequency of the
prefix ‘,ymm1’ than for all the others. The word ‘,ymm’ would
occur more frequently but is filtered out by limiting the code
fragment lengths between 5 and 8.

Another interesting fragment is ‘qqword’, which we already
saw in the overview representation. The distribution of the
occurrence frequencies of that code fragment is illustrated in
Figure 4 (a) as a textual representation. What is also interesting
here are the empty regions and the increasing values of the
relative occurrence frequencies to the apex of the largest
triangle.

There is also a clear structuring into two larger regions
which are indicated by the two triangles close to the source
code line. The larger square gives a hint about the overlapping
regions.

Requesting two words such as ‘qqword’ and ‘sub’ shows
that both seem to be located in totally different regions in the

code, while the code fragment ‘sub’ occurs less frequently than
the fragment ‘qqword’, which can be seen in Figure 4 (b). The
corresponding pixel-based and overlap-free representations
can only serve as an overview but have to be changed to a
text-based representation in order to visually distinguish the
code fragment occurrence frequencies for more than one code
fragment.

Selecting a code fragment opens a source code viewer
showing the original form where the same color coding as
in the triangle view is applied. This helps directly link the
found observations in the visualization to the raw data, i.e., to
the source code.

VI. DISCUSSION AND LIMITATIONS

Although we presented an intuitive visualization technique
for source code similarities on a pure text comparison-based
approach, we are aware of the fact that there are also various
limitations of the approach which will be discussed in the
following:

o Algorithmic scalability: The data preprocessing algo-
rithm can be very time-consuming, depending on the
length of the source code to be analyzed and also on
the number of similar code fragments. This process is
provided as a separate component allowing us to first
preprocess source code and then independently inspect
the output of the algorithm. This makes the visualization
technique interactive because we do not need to algorith-
mically transform the original source code again but can
look up requested information in the already generated
output data.
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Fig. 4. Filtering the source code for a specific word and visually inspecting the word similarities in the code: (a) The code fragment ‘qqword’. (b) Requesting
two code fragments ‘qqword’ and ‘sub’ simultaneously.

« Visual scalability: The output of the similarity algorithm language, which is advantageous. However, if someone

is already that large that much visual clutter caused by
overplotting and occlusion can occur in the overview rep-
resentation. Consequently, for some source code exam-
ples the number of generated similar code fragments can
be too large to be analyzed directly in such an overview,
which demands to already filter the preprocessed data
before inspecting it visually.

Programming language independency: Our similarity
algorithm is totally independent of the programming

is interested in seeing the results of more sophisticated
code clone detection algorithms, we are aware of the
fact that the programming language has an impact on
the preprocessing algorithm.

Data aggregation: If problems with visual scalability
occur, one can apply aggregation techniques such as
summing up values. This can also be applied in our
visualization technique, leading to a more uncluttered
display; however, as a drawback, the displayed values



cannot be interpreted that easily any more. Aggregation
techniques should be applied after first having inspected
the probably cluttered and overdrawn original generated
data of the similarity algorithm.

« Source code/software system structure: We display the
code as a line-based representation, which makes the
code unreadable and not interpretable. This is due to
having a representative element for each character in
the code on a horizontal one-dimensional line. It may
be beneficial to also visualize the source code structure
(pretty printed form) or even the hierarchical organization
of the complete software system. This might additionally
provide a tool for navigating in the visualization, e.g., by
collapsing or expanding source code.

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduced an overview-based visualization
technique for visually analyzing textual data such as source
code. Since source code can become very long, obtaining an
overview of it is difficult and scrolling cannot really support a
viewer or software developer to quickly get insights into this
kind of data. This is particularly the case when the code must
be analyzed for similarities, i.e., if regions in the code are
of interest in which code is similar. Our visualization makes
use of a triangular matrix representation and visually encodes
occurrence frequencies and relative frequencies locally as well
as globally as color-coded pixels that can also be overlaid by
detailed textual information although it clutters the display. In-
teraction techniques are integrated, allowing one to adjust the
occurrence frequency and relative frequency display intervals
and the substring length of interest.

For future work, we plan to add further interaction features
to the already existing palette in the tool. Moreover, we plan
to apply the visualization to source code from different pro-
gramming languages to see if those show similar or different
visual patterns. The dynamics of source code might also be
of interest, i.e., it may be useful to see how the similarities
in source code evolve over time, for example, from revision
to revision during the development of a project. This might
give hints about similar text passages that are added by copy
and paste and that were not present in a former version of the
system. Also, an evaluation by an expert user study, possibly
including eye tracking [25], is interesting to find out if our
technique is easy to learn and if the visual patterns are useful
to visually explore such data.
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