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Abstract Dynamic graph visualization techniques can be based on animated or static dia-

grams showing the evolution over time. In this paper, we apply the concept of small multiples

to visually illustrate the dynamics of a graph. Node-link, adjacency matrix, and adjacency

list visualizations are used as basic visual metaphors for displaying individual graphs of the

sequence. For node-link diagrams, we apply edge splatting to improve readability and reduce

visual clutter caused by overlaps and link crossings. Additionally, to obtain a more scalable

dynamic graph visualization in the time dimension, we integrate an interactive Rapid Se-

rial Visual Presentation (RSVP) feature to rapidly flip between the sequences of displayed

graphs, similar to the concept of flipping a book’s pages. Our visualization tool supports the

focus-and-context design principle by providing an overview of a longer time sequence as

small multiples in a grid while also showing a graph in focus as a large single representation

in a zoomed in and more detailed view. The usefulness of the technique is illustrated in two

case studies investigating a dynamic directed call graph and an evolving social network that

consists of more than 1,000 undirected graphs.

Key words: Dynamic graph visualization, rapid serial visual presentation, flip-book

M Burch, D Weiskopf. Flip-Book Visualization of Dynamic Graphs. Int J Software

Informatics, 2015, ?(?): 1–??. http://www.ijsi.org/1673-7288/3/1.pdf

1 Introduction

Quickly flipping a book’s pages is a simple way to get a first impression of a book’s

content. We were inspired by a book-flipping technique described by de Bruijn and

Spence [14] based on the concept of Rapid Serial Visual Presentation (RSVP) [27].

Although RSVP was originally applied as a reading aid, it can easily be extended

to a concept for quickly presenting a sequence of visualizations, in particular, repre-

sentations of time-oriented data [1] that can be displayed as a sequence of individual

snapshots.

Dynamic graph visualization is a field that benefits from this concept. Exploration

scenarios such as the questions “What is there?” or “Is it here?” are important in time-

varying data representations to get a quick overview of the whole dataset or rapidly

search for anomalies or outliers. These two questions can be answered by interaction

techniques like browsing or weighted browsing (if one knows what to search for).

In this paper, we map dynamic relational data to a dynamic graph visualization

based on node-link diagrams visually enhanced by edge splatting [11], on adjacency
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matrices, as well as adjacency lists [20]. The node-link diagrams are shown in a pre-

computed and fixed graph layout and are placed as small multiples [30, 31] in a

2D grid. Also the adjacency matrices and adjacency list representations are always

displayed with the same vertex order to preserve a viewer’s mental map. We use a

left-to-right and top-to-bottom reading direction in the grid. To achieve good visual

scalability we map the graphs to as many grids as needed to display the whole dataset.

To allow good comparisons of graphs in longer graph sequences on an overview-

based design while still supporting details of a single graph, we support a focus-and-

context visualization. Moreover, if an analyst is more interested in additional graph

properties such as solutions to graph-theoretic problems we support an interactive

way to have a look at the dynamics of shortest paths for example.

This article is an extended version of a previous paper [13] in which we address the

issue of visually exploring long graph sequences. Compared to our previous work, we

added visual metaphors for adjacency matrices, adjacency lists, and we now support

hybrid small multiples which is a combination of several individual metaphors in the

graph sequence. Moreover, a focus-and-context design is integrated showing small

multiples together with large singles in order to see the dynamic graph at small and

large scale. The visualization can also be used to highlight the dynamics of shortest

paths in any of the visual metaphors.

Overall, we extend existing dynamic graph visualization by five contributions:

• Modifiable grid for small multiples: The graphs of a longer sequence are ren-

dered on a modifiable grid similar to a small multiples representation. The user

can interactively change the row and column number in the grid which shows the

graphs at different scales. In contrast, our work on parallel edge splatting [11]

displays the graph sequence in a 1D row only, which limits the number of dis-

playable graphs. The grid-based technique is applicable to all visual metaphors,

i.e. node-link diagrams, adjacency matrices, and adjacency lists.

• Flip-book feature: To further improve the scalability in the time dimension we

use a flip-book feature. This is an extension to the RSVP visualization in which a

graph subsequence is shown in a comic strip-like representation and gets smoothly

animated [4]. The flip-book approach makes use of the perceptual ability of the

human visual system to rapidly recognize time-varying visual patterns.

• Focus-and-context design: We display longer graph sequences in an overview-

based representation, but the resulting visualization might suffer from the small

multiples representation. In particular, when many graphs are shown side-by-side

on a grid, details are typically hidden. To mitigate this situation, we also show

large singles (focus), in addition to the small multiples (context), i.e., graphs of

the sequence can be shown at small and large scale.

• Interactive visual metaphors exchange: Since the visualization tool supports

graph visualizations with the major visual metaphors, the user can interactively

decide if the graph data is visually encoded as node-link diagrams, adjacency

matrices, or adjacency lists. Depending on the graph properties, one can do this

individually for each graph in the sequence or for all of them at once.

• Dynamics of shortest paths: Typically, a dynamic graph visualization can

unhide interesting time-varying graph patterns. However, in many scenarios, the
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graph data is too dense to explore it for certain aspects over time. This is in

particular the case when an analyst is interested in the time-dependent behavior

of shortest paths while simultaneously seeing the complete graph sequence.

Flipping the modifiable grids quickly on user’s demand is used as key interaction

principle in this paper, similar to RSVP, to manage the visualization of longer graph

sequences, which is the major focus of this work. We illustrate the usefulness of this

flip-book concept by applying it to a dynamic call graph from software development

and to a dynamic social network consisting of more than 1,000 graphs.

2 Related Work

There are many application domains dealing with dynamic relational data. Social

networks, call graphs between functions in software systems, or protein-protein inter-

actions in bioinformatics are examples of this kind of data.

There are two basic approaches in dynamic graph visualization: time-to-time

mapping as it is used in animation is one way to show the time dependency, whereas

time-to-space mapping is another way to visually depict time-varying graphs [3]. Sev-

eral comparative studies focus on the question which dynamic graph visualizations

lead to better user performance [2, 18, 32]. Also, hybrid visualizations making use of

difference maps and animations were designed and evaluated [24].

When animating a graph, a node-link diagram is generally laid out and smoothly

transformed into a sequence of layouts. This process demands for a good layout for

both each single graph in the sequence and the whole sequence in order to preserve the

viewer’s mental map [23], obtained by a high degree of dynamic stability. Offline [15]

and online [16] approaches are investigated for their suitability to represent dynamic

graphs, depending on whether the graph sequence is known beforehand or graphs

have to be added on-the-fly.

Animation has some general drawbacks apart from high algorithmic complexity.

The viewer can only see one graph at a time, leading to problems when comparing

several graphs in the sequence to identify time-varying visual patterns such as trends,

countertrends, or anomalies. For this reason, time-to-space mappings [5, 7, 28] were

developed that present a subsequence of the evolving graph in one view. This concept

allows users to visually analyze a dynamic graph by having a look at all the graphs

side by side in a small multiples representation [30, 31].

One drawback of a small multiples diagram is its poor scalability with time.

For example, in the parallel edge splatting technique [11], only one representation

row is used for a graph sequence, which can be enhanced by applying the concept of

RSVP [4]. However, in this RSVP variant, the graph sequence is animated and only

one row containing a subsequence of graphs is displayed.

As an enhancement in our work, instead, we do not smoothly animate the graph

subsequence by moving this sliding time window, but we propose an approach that

places a graph subsequence on a rectangular grid and allows users to flip these grids

just as simulating the flipping of a book’s pages. This concept allows users to see

several graphs in one image before flipping to the next grid [13].

Moreover, we support another graph layout apart from the bipartite one used by

Burch et al. [11]. We exploit a radial graph layout, but also hierarchical [29] or force-
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directed layouts [17, 21] could easily be integrated in our tool by just extending the

set of layout methods by new source code implementations in the corresponding class.

We also support matrix representations, which have benefits for dense graphs [19, 25]

but problems when solving path-related tasks. Also, adjacency lists [20] are integrated

in the tool, showing dense graphs in a compact and space-filling way.

In a traditionally animated diagram, only one graph at a time is shown on the

entire screen, whereas in a time-to-space mapping, several graphs of the sequence

have to be displayed, limiting the display space for each single graph. This demands

for an alternative visualization strategy, i.e., some kind of hybrid representation ben-

efiting from both concepts: animation and static displays. Our method utilizes this

combination of concepts.

In a recent paper, van den Elzen and van Wijk [33] illustrate the usefulness of

small multiples compared to what they call large single representations. In our work,

we are also able to show large singles with a details-on-demand function, but we

focus on showing time-varying patterns for which a small multiples representation is

required to first give an overview of the dataset [26] and then to visually compare the

individual time steps.

3 Data Model

We model a directed weighted graph mathematically as

G = (V,E) ,

where

V := {v1, . . . , vn}
denotes the set of n ∈ N vertices and

E ⊆ V × V

the set of edges. Each edge e ∈ E has a weight

w(e) ∈ R

given by a weight function

w : E −→ R .

In the context of this work, a layout L of a graph G is a function that maps

vertices to positions on a display by

vi 7→ (xi, yi) .

Edges are represented as links between two related vertices in the node-link metaphor

and as color-coded squared graphical primitives in the adjacency matrix and list

metaphors.

A dynamic graph

Γ := (G1, . . . , Gk)

consists of a sequence of k ∈ N graphs. We define the union of all graphs as G⋃ :=

(V⋃, E⋃) with

V⋃ =

k⋃
i=1

Vi
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(a) (b) (c) (d)

Fig. 1. Single node-link graph layouts: (a) A bipartite graph layout in a left-to-right reading
direction. The vertex set is first copied and then the original edges point from left to right.
(b) A radial layout that maps vertices to the circle circumference; the same graph is depicted
as in (a) but the edge directions are not explicitly shown. Further visual metaphors for graph
data: (c) An adjacency matrix maps vertices to rows and columns and shows graph edges as
color-coded matrix cells at the intersection points. (d) An adjacency list removes the empty
cells from a matrix by horizontally stacking the color-coded cells. Incoming and outgoing
edges can be split at the vertical vertex line.

and

E⋃ =

k⋃
i=1

Ei ,

with Gi = (Vi, Ei) ∀ 1 ≤ i ≤ k.

The sum of a graph subsequence

Γl−m := (Gl, . . . , Gm)

from index l to index m is defined as

Gl−m := (V⋃, El−m) ,

where

El−m :=

m⋃
i=l

Ei .

The weight of each e ∈ El−m depends on the aggregation mode.

4 Visualization Technique

We describe a technique for representing dynamic graphs in a small multiples visual-

ization. For each graph, we exploit the node-link, adjacency matrix, or adjacency list

visual metaphors.

4.1 Individual Graph

Before rendering a sequence of graphs in a small multiples representation, we have to

decide how to represent each individual static graph Gi, i.e., in which specific layout.

The technique can work with two different node-link graph layouts for individual

static graphs: bipartite and radial layouts, see Figure 1 (a) and (b). Our visualization

technique also supports adjacency matrix and adjacency list layouts, for which we

use color-coded squared graphical primitives, see Figure 1 (c) and (d). The adjacency

matrix uses color-coded matrix entries for expressing the corresponding weights of the

directed graph edges. For the list representation, we visually encode outgoing edges
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Algorithm 1 Generation of a Bipartite Graph Layout

BipartiteLayout(G = (V,E), c):

V := {v1, . . . , vn}; // Vertex set

E := {e1, . . . , e|E|}; // Edge set

c; // Colorscale

w; // Weight function

xleft; // Left side axis

xright; // Right side axis

h; // Height of both axes

for all e ∈ E do

(vi, vj) := e;

color(w(e), c); // Color code link

drawline(xleft,
i
n · h, xright,

j
n · h); // Graph link

end for

to the right in a stacked fashion and consequently, incoming edges to the left by using

color-coded squares similar to the adjacency matrix.

For all visual metaphors, we first compute the union of all graph vertices V⋃
occurring in the whole sequence Γ, similar to our previous work [11]. This vertex

union is needed to support dynamic stability in order to preserve a viewer’s mental

map, which is important for the visualization technique.

The next step for the bipartite node-link diagram is to generate a copy of the ver-

tex set V⋃ denoted by V ′⋃. The visual mapping of a single graph Gi from the sequence

Γ is computed by first mapping the vertices of both sets V⋃ and V ′⋃ equidistantly on

two parallel vertical lines (see Figure 1 (a)) in a way that each vertex copy lies on the

same horizontal line cutting through each of the vertical axes.

Then, the edges of the laid out graph Gi are processed by plotting them from left

to right as straight lines between their corresponding vertex positions. This layout

produces a node-link graph diagram in a left-to-right reading direction, i.e., there are

only links between the vertical axes, but no links are present between vertices located

on one single axis. This visualization strategy results in a bipartite graph layout, see

Algorithm 1.

For the radial layout, we also first compute the union set of all vertices occurring

in the whole graph sequence Γ. Then, a single graph Gi is depicted by equidistantly

mapping all the vertices to the circle circumference. Edges in a graph Gi are visualized

by straight links connecting the corresponding vertices on the circle circumference.

This strategy results in a graph layout represented in Figure 1 (b). Algorithm 2

illustrates the layout generation process.

It may be noted that in a radial layout, we cannot easily derive the direction

of an edge without explicitly attaching arrow heads pointing to the target node, but

in such a layout we only have one representative node for each vertex. Consequently,

path-related tasks are easier to solve for non-directed graphs in a radial layout because

the eye does not have to jump to and fro between start and target nodes when tracing

a path.
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Algorithm 2 Generation of a Radial Graph Layout

RadialLayout(G = (V,E), c):

V := {v1, . . . , vn}; // Vertex set

E := {e1, . . . , e|E|}; // Edge set

c; // Colorscale

w; // Weight function

r; // Radius of circle

for all e ∈ E do

(vi, vj) := e;

color(w(e), c); // Color code link

drawline(r · sin( i2πn ), r · cos( i2πn ),

r · sin( j2πn ), r · cos( j2πn )); // Graph link

end for

(a) (b)

(c) (d)

Fig. 2. A node-link diagram in a bipartite graph layout without (a) and with (b) edge splat-
ting. A node-link diagram in a radial graph layout without (c) and with (d) edge splatting.

If a graph visualization has to be used efficiently for solving path-related tasks,

node-link diagrams are preferable compared to adjacency matrices or lists [19]. But,

on the positive side, matrix and list representations benefit from a high degree of

visual scalability. Since link crossings are avoided, the viewer can easily explore the

dynamic graph for evolving cluster regions, which can be a challenging task for node-

link diagrams. For this reason, we also integrated matrix and list visual metaphors in

our visualization tool to allow the visual analysis of evolving dense graphs.

4.2 Edge Splatting

When drawing dense graphs by node-link diagrams, we soon reach a situation where

many link crossings occur. In the bipartite and radial layouts where graph vertices

are only allowed to be placed on one-dimensional lines, the probability for such link

crossings increases rapidly with the number of vertices and edges.

To address this problem we apply edge splatting [11]. In a splatted node-link

diagram, the links are rasterized into a sequence of weighted pixels (depending on the

edge weights); weights for the pixels are accumulated by incrementally processing all

graph links. This finally generates a matrix (i.e., image) consisting of edge density
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Algorithm 3 Generation of a Splatted Graph

Splatting(L,G = (V,E), c):

L; // Layout of graph G

V := {v1, . . . , vn}; // Vertex set

E := {e1, . . . , e|E|}; // Edge set

c; // Colorscale

A; // Matrix for density field

w; // Weight function

for all e ∈ E do

(vi, vj) := e;

A+ = rasterize line(e, w(e)); // Map link to A

end for

boxfilter(A); // Smoothing

for all 0 ≤ i ≤ A.length− 1 do

for all 0 ≤ j ≤ A[0].length− 1 do

color(A[i][j], c);

drawPixel(i, j);

end for

end for

values, which can again be used to display the edge coverage by a density field visual-

ized by a user-defined color scale. The box filter is applied to obtain smoother density

fields and make the diagrams more aesthetically appealing. The generation process

for edge splatting is illustrated in Algorithm 3. Figure 2 shows the differences between

splatted and non-splatted node-link diagrams in the layouts generated in this paper.

4.3 Small Multiples Graphs

We apply the idea of small multiples representations to show a long graph sequence

in a single static view. This has benefits when comparing several graphs in a side-by-

side view in order to find temporal patterns such as trends, countertrends, temporal

shifts, oscillations, or anomalies/outliers. These patterns are difficult to find in a

corresponding animated diagram, which only depicts one graph at a time and then

smoothly transforms one to the next one in the sequence.

Each graph in a small multiples view is represented in the same layout with

the vertices at the same relative positions. This strategy supports us to preserve the

viewer’s mental map because it has the highest degree of dynamic stability. Figure 3

illustrates a small multiples representation for 8 graphs in a sequence.

As an additional feature, the user can visually encode each graph in the sequence

individually by a different visual metaphor, i.e., a hybrid small multiples representa-

tion, see Figure 4. This is beneficial, when graphs in a longer sequence switch from

a rather sparse behavior to a denser one. This means, for the sparse graphs, a node-

link visual metaphor should be applied since the chance of link crossings is low. If

the graphs become dense, hairball-like structures may be the result which cannot be

made more readable by edge splatting. Consequently, the user wishes to switch to

either an adjacency matrix or adjacency list visualization.
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(a) (b)

Fig. 3. A sequence of 8 graphs represented as two rows of four splatted graphs in a bipartite
layout (a) and two rows of four splatted graphs in a radial layout (b).

Fig. 4. A hybrid small multiples representation for representing a graph sequence in different
visual metaphors for each single graph.

4.4 Interaction Techniques

Several interaction techniques are included in our tool to complement the small mul-

tiples visualization and support the data analysis.

• Grid flipping: Flipping through the grids can be used to analyze the dynamic

data. The perceptual abilities and fast pattern recognition by the user are exploited

by this concept with the goal to quickly get an overview of the evolution of longer

graph sequences.

• Scrolling: Apart from directly flipping the grids, traditional scrolling interaction

is implemented, allowing users to browse through the graph sequence one by one

and not subsequence by subsequence.

• Focus-and-context: When many graphs are shown side-by-side on a grid, details

are hard to see. For this reason, we support large singles (focus) together with the

small multiples (context).

• Grid subdivision: The number of rows and columns can be defined by the user,

which directly influences the dynamic visual graph patterns as well as the size of

each single graph to be displayed in each grid cell.

• Choice of layout: We support bipartite and radial node-link layouts. These

layouts can be selected interactively. Other layouts could easily be integrated in

our visualization tool. Apart from node-link diagrams, also adjacency matrices

and adjacency lists are integrated.

• Graph aggregation: Graph subsequences Γl−m can be aggregated on user’s de-

mand. All graph edges are transformed by applying aggregation techniques.
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• Graph comparison: If there is much visual clutter in the diagrams and one is

only interested in seeing changes in the data, our tool is able to compare subse-

quent graphs and only show the added or deleted edges between these neighboring

graphs.

• Weight filters: To further reduce visual clutter, edges can be filtered by their

weights, i.e., only those links are displayed whose weights are inside a user-defined

weight interval.

• Details-on-demand: If the user selects one single graph from the displayed se-

quence, it is visualized in a separate frame in a larger scale. Additional textual

information such as the number of vertices, edges, and time steps or the maximum

weight can be shown on user’s demand either in a separate frame or as a mouse

tooltip.

4.5 Visual Patterns

In this section, we discuss typical visual patterns produced by our visualization tech-

nique. These patterns should correspond to patterns in the represented dataset. There-

fore, we illustrate possible patterns in the visualization and map them to characteris-

tics in the time-varying relational data. We subdivide these patterns into static and

dynamic ones.

4.5.1 Static Patterns

There are several visual patterns that can be derived from a static graph alone.

Aesthetic graph drawing criteria emphasized by the applied layout algorithm or vertex

ordering are responsible for a readable diagram, which helps unhide these patterns.

The most important ones are described in the following.

• Clusters: A cluster is indicated by a set of nodes displayed close to each other

and connected by several links. These typically generate dense graph regions.

• Graph densities: A graph can have a certain degree of density, which can be

visually derived by having, e.g., a look at the color coding of the density field (in

a splatted node-link diagram). A graph might also be globally sparse but locally

dense, which is typically the case when it consists of several stand-alone clusters.

• Symmetries: Some subgraphs may contain similar visual patterns, which can

indicate that for these subsets of vertices the corresponding relations behave in a

similar way.

• Inter-cluster relations: If there are several clusters (i.e., dense subgraphs), these

may be connected by a few links, which can be directly detected in the graph.

• Anomalies and outliers: Unexpected or “strange” behavior can be classified as

anomaly. Such a phenomenon can be visually derived from the visualization by

looking for visual patterns that do not match any of the described categories.

4.5.2 Dynamic Patterns

Based on these static patterns, a dynamic graph may also contain several time-varying

ones. In the TimeEdgeTrees visualization [12], we illustrated several dynamic patterns

for quantitative data that can easily be adapted to dynamic graph visualization.
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• Trends: A trend is a steadily increasing or decreasing pattern. For example, a

cluster pattern might get denser or sparser or the weight of an inter-cluster relation

might grow or shrink over time.

• Countertrends: A countertrend is a behavior that shows characteristics that are

opposite to another identified trend pattern; for example, if a cluster pattern gets

denser and denser, another cluster pattern gets sparser and sparser in the same

time interval.

• Stabilities: A stability pattern is apparent if over a longer time a graph substruc-

ture behaves constantly, i.e., no changes occur in this time interval.

• Oscillations and periodicities: A visual pattern may periodically change over

time. Seasonal effects might be the reason for such a phenomenon, i.e., clusters

may disappear for some time and then reappear again.

• Temporal shifts: If a visual pattern occurs in a subgraph for some time and with

some delay a similar pattern occurs in another subgraph, this is called a temporal

shift.

• Anomalies and outliers: Also in the dynamic graph case, some unexpected or

“strange” behavior might occur over time that cannot be described by any of the

patterns above.

5 Case Studies

We illustrate the usefulness of our dynamic graph visualization technique by means

of two case studies: a dynamic call graph and a dynamic social network.

5.1 Call Graphs

The evolution of software and, in particular, the evolution of call relations provide

interesting datasets to be analyzed [10]. In this work, we will have a look at dynamic

call graphs extracted from open source software development by first preprocessing

data from configuration management systems [8, 9]. Today’s software systems typ-

ically consist of several thousands of methods that may be related by their calling

mechanisms. The changes of these relations from release to release make the analysis

and visualization of such data challenging. Such information is important for software

developers, maintainers, and managers to detect and identify design flaws such as

unwanted call relations for example.

In this case study, we explore the dynamic call relations of the JUnit regression

testing framework (www.junit.org). The dynamic graph data contains 20 graphs (re-

leases). These were obtained by running the Java bytecode compiler and by using

the DependencyFinder (depfind.sourceforge.net) to extract method call dependen-

cies. This process resulted in 2,817 graph vertices related by more than 10,000 edges.

Moreover, the graph vertices are hierarchically organized and ordered by the soft-

ware system structure. This project hierarchy can be used in the visualization as

a meaningful 1D vertex order (which could further be improved by traversing the

subhierarchies).

Figure 5 shows a small multiples view of the 20 call graphs from the JUnit

project in a single static view. In this figure, we experiment with all possible visual

metaphors supported by our visualization tool, i.e., bipartite node-link layouts, radial

node-link layouts, adjacency matrices, adjacency lists, and a hybrid small multiples
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representation. By inspecting the individual graphs, we can observe several cluster

patterns, inter-cluster relations, dense regions, symmetries, and outliers.

Looking at the graph evolution shown in Figure 5 (a) in the bipartite layout,

one can easily see some interesting patterns. There are significant visual differences,

i.e., major changes in the development of the system. For example, from time step

11 to 12, the stability pattern is changed by an abrupt increase of functionality. For

the next 4 time steps, the call relations seem to remain stable again apart from some

outliers in graphs 14 and 15. Then from graph 15 to 16, there seems to be another

increase in call relations, which seems to remain nearly stable until the very last of

the software releases.

Having a look at the same dynamic graph data depicted as small multiples of

radial layouts (Figure 5 (b)), we lose the information about the direction of the call

relation on the one hand. On the other hand, we obtain a more clutter-free diagram

because the long crossing links from top left to bottom right (as in the bipartite layout)

are avoided in a radial layout. Here, we can confirm the observations made earlier in

the bipartite layout, but we can get even more insights due to the more clutter-free

representations. It may be noted that it is of great importance to play around with

several layouts for dynamic graph data because it can help unhide patterns that may

be hidden in one layout but not in the other.

Asking for details-on-demand shows that the junit.framework package is not

changed very much, an information that can also be observed by computing and

visualizing the added and deleted relations between subsequent graphs as in [11]. The

flip-book feature can further support the change detection.

The evolution of clusters can easily be explored by either looking at the horizon-

tally occurring dense structures in the bipartite small multiples or looking for denser

circle segments in the radial layouts. These clusters for call relations indicate high

cohesion in the corresponding software artifact, i.e., classes, directories, or packages—

depending on the level of hierarchical granularity. Examples of these patterns are

given by the Assert class in the org.junit package as obtained by looking at the

details-on-demand function. Such dense clusters can easily be detected in the corre-

sponding matrix visualizations, see Figure 5 (c). If we are more interested in vertices

(methods) that are called frequently and that call frequently, a list-based represen-

tation is useful, see Figure 5 (d). A combination of the visual metaphors is shown in

Figure 5 (e), in which the matrix representations have benefits for dense clusters and

in which node-link diagrams can be helpful to trace paths, also over time.

There are also some trend patterns depicted in the small multiples diagram.

There is some kind of steady increase of call relations between some elements, e.g., in

the org.junit.runner package. By having a look at the graph comparison mode for

added relations, we can confirm such an increase of relations.

5.2 Social Network

Another application is the visualization of dynamic social networks. As an example,

we preprocessed data from the ACM Hypertext conference in 2009, as already de-

scribed in [4]. In this freely available dataset, face-to-face proximities of conference

attendees were monitored by RFID badges during the conference days. If two partic-

ipants faced each other at a small distance over at least 20 seconds, this was recorded
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(a)

(b)

(c)

(d)

(e)

Fig. 5. 20 releases of the JUnit project and the call graphs visualized as a sequence of
bipartite node-link layouts (a), a sequence of radial node-link layouts (b), a sequence of
adjacency matrices (c), a sequence of adjacency lists (d), and hybrid small multiples (e).
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Fig. 6. A dynamic social network with 1,178 graphs as radial small multiples.

Fig. 7. Aggregation to 56 graphs of the same dataset as shown in Figure 6.

as a contact between both. Doing this for all attendees over the whole conference

leads to a dynamic social network dataset.

In our scenario, the data consists of 20,818 face-to-face contacts of 113 conference

attendees. The conference was held over three days and the data was anonymized.

Hierarchical clustering was first applied to find a suitable order among the graph

vertices, similar to the scenario in the dynamic call graph application where the

hierarchy and vertex order was given by the software system structure.

Figure 6 shows 1,178 graphs recorded during the conference days. Looking at this

overview small multiples diagram, one can easily see that the time-varying graphs
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can be visually separated into three subsequences, which comes from the conference

days. This means that face-to-face contacts were occurring more frequently during

the days than during the nights, which is an expected phenomenon. Getting such an

overview is difficult by standard graph animation techniques and existing time-to-

space mappings. A drawback of our overview-based visualization is the poor visual

scalability. However, the overall dynamic patterns are clearly visible. Furthermore, the

flip-book feature allows us to display graph subsequences in a larger display space.

If we are now interested in looking at a single day, it is difficult with this overview

representation since the displayed graphs are far too small to be further analyzed.

Therefore, we decide to modify the grid to only show the graphs of one day (from

0 a.m. to 24 p.m.) at a time. This results in three grids that can now be flipped by

applying the flip-book feature. This further uncovers interesting graph patterns. We

can see that for some time intervals the graphs are sparser than for other time intervals

in which they become denser. This phenomenon can be explained by the conference

sessions, i.e., there are only a few face-to-face contacts during the sessions but much

more during the coffee breaks. This holds for all three days. Cluster structures and

dense graph regions can be detected by looking for green color-coded graph regions.

There are still some outliers, for example single relations during the sessions.

Picking out only individual graphs (grid size 1 × 1), one can use the flip-book

feature to rapidly browse the graphs and to see how the time-varying behavior is

changing from graph to graph. This is possible because the graph nodes remain at

fixed positions in our layout and since we apply edge splatting for detecting graph

patterns in dense graph regions. If one graph is of special interest, it can be further

analyzed by filter functions or details-on-demand features, which can also be applied

to any kind of graph subsequence.

Figure 7 shows an aggregated view of the same social network dataset as in

Figure 6. In this scenario, 56 graphs remain which can now be displayed in larger

space. The three conference days can still be visually separated by the subsequences

of empty graphs during the nights. Aggregation is hence a functionality to obtain

more display space, but, on the negative side, many time-varying details are hidden

in the aggregated graphs.

6 Discussion

The small multiples based visualization for dynamic graphs has several benefits but

also a number of drawbacks. We will discuss some aspects concerning positive and

negative points on a comparative basis with time-to-space and time-to-time mappings

in the following.

• Visual scalability: In an animated node-link diagram, a high degree of visual

scalability is achieved since each graph can be displayed on the entire display.

In a traditional time-to-space mapping, the display space has to be divided into

as many slices as time steps have to be displayed. The same holds for our small

multiples representation.

• Algorithmic complexity: When a node-link diagram is animated from one time

step to the next, typically smooth animation is used to help preserve a viewer’s

mental map. Sophisticated layout algorithms have to be designed in order to
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achieve a high degree of dynamic stability when the graph is animated. If the

graph changes abruptly, this goal is hard to reach. In time-to-space mappings,

instead, the vertex positions are computed once in the beginning and remain fixed

over time. This helps preserve the mental map, which is a goal of this work, in

particular, when longer graph sequences have to be explored for time-varying pat-

terns.

• Visual clutter and overdraw: In time-to-space mappings, the vertices are of-

tentimes placed on 1D lines to better compare them in an aligned fashion. Layouts

restricted to 1D have a higher probability of link crossings and consequently of

visual clutter. Such overdraw and clutter are reduced by edge splatting, which is

not required in traditionally animated node-link diagrams.

• Further clutter reduction techniques: Edge bundling might be used as an-

other technique to reduce the amount of visual clutter. In contrast to edge splat-

ting, which does not spatially change node and link positions, it bundles edges

together. A combination of edge bundling and edge splatting might be a promis-

ing approach to reduce visual clutter that still gives a feeling about the number

of links contained in a bundle.

• Layout dependency: Aesthetic criteria such as a minimization of link crossings,

an even distribution of vertices in the plane, or a maximization of symmetries have

to be taken into account by layout algorithms. This is problematic for animated

diagrams that have to look for dynamic stabilities as one criterion and additionally

for aesthetically appealing and readable layouts of each graph. In time-to-space

mappings, this is not that problematic. We are also able to switch between several

layouts on demand.

• Solving comparison tasks: A most important task in time-series data visualiza-

tion is the comparison between time steps. This is difficult for animated diagrams,

where only one graph at a time is displayed. In a time-to-space mapping, many

graphs are displayed and the users can inspect them in a single view.

• Data attachments: In an animated diagram, it is difficult to attach additional

data such as a hierarchical organization of the vertices or vertex attributes. If the

vertices are aligned and mapped to 1D lines as in the bipartite layout, such addi-

tional information can be added to the static plot and aligned with the vertices.

This is difficult in a small multiples representation laid out in a grid, but it is easier

than in a corresponding animated diagram. If a suitable data attachment visual-

ization is found for a single graph, this can be applied to each individual graph in

the same way, making the data attachment easily comparable in a time-to-space

mapping.

7 Conclusion and Future Work

In this article, we show an extension of our previous work on a flip-book interaction for

edge-splatted small multiples visualizations of dynamic graphs [13]. We additionally

integrate adjacency matrices and adjacency lists, support a hybrid small multiples ap-

proach, integrate a focus-and-context technique, and finally allow the user to explore

time-varying shortest paths. To reach this goal, we visually map a graph sequence to a

modifiable 2D grid, which can then be flipped on user’s demand similar to the concept



Flip-Book Visualization of Dynamic Graphs 17

known as Rapid Serial Visual Presentation (RSVP). Here, the perceptual abilities of

the human visual system are exploited for fast pattern recognition. We classify the vi-

sual patterns of our visualization technique into static and dynamic ones. In two case

studies, we use these visual pattern categorizations to uncover static and dynamic

characteristics in the example datasets coming from applications in software develop-

ment and social networks. Interaction techniques are applied in these case studies to

obtain more detailed insights into the static and dynamic graph data and to illustrate

the usefulness of our novel visualization concepts.

For future work, we plan to add more node-link graph layout algorithms such

as force-directed and hierarchical layouts. Also, a comparative user study should be

conducted to assess the benefits and drawbacks of time-to-space mapping, time-to-

time mapping, and our hybrid flip-book interaction. Eye tracking might be a good

technology to uncover visual task solution strategies of the study participants [6, 22]

and to find difficulties they have when using our technique. These insights could then

be used to further enhance the presented visualization.
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