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Abstract—The visualization of relational data by node-link
diagrams quickly leads to a degradation of performance at
some exploration tasks when the diagrams show visual clutter
and overdraw. To address this challenge of large-data graph
visualization, we introduce Graph Metric Views, a technique
that enriches the visualization of traditional layout strategies
for node-link diagrams by additionally allowing an analyst to
interactively explore graph-specific metrics such as number of
nodes, number of link crossings, link coverage, or degree of or-
thogonality. To this end, we support an analyst with additional
histogram-like representations at the axes of the display space
for graph-specific metrics. In this way, a cluttered and densely
packed node-link diagram becomes more explorable even for
dense graph regions: The user can use the distribution of metric
values as an overview and then select regions of interest for
further investigation and filtering.
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I. INTRODUCTION

Graphs allow modeling and illustrating relationships
among a group of objects. Euler [1] was one of the pioneers
who modeled such relationships in a graphical way by using
nodes for the objects and links expressing the pairwise
relations when he found an abstraction for the problem
of the “Seven Bridges of Königsberg”. Nowadays, even
sophisticated methods for graph drawing produce cluttered
visualizations for large and dense networks. This is even
more problematic considering that there are further attributes
in the data that cannot be integrated into a node-link dia-
gram.

In this paper, we introduce Graph Metric Views: His-
tograms attached to the sides of a node-link diagram (see
Figure 1), similar to marginal histograms aligned with 2D
scatter plots. These views depict information about the
layout of the graph, its graph-theoretic properties, and the
underlying data. While users are exploring the graph and
interacting with it, the metric views are updated accordingly.
Furthermore, interesting regions of the metric views can be
visually linked to the node-link diagram by coordination
strategies like brushing and linking or direct visual linking.

We argue that this approach is advantageous when the
graph becomes cluttered [2] or all visual channels are
exhausted in the node-link diagram and thus no further
information can be shown. Furthermore, an analyst can
explore regions that are not clearly visible in the layout due

to occlusion and overdraw. For example, cliques may not
be perceived due to the high link density in these regions,
whereas we can clearly show where and how big they are.

Our interactive technique is designed around the Visual
Information Seeking Mantra [3]: overview first, zoom and
filter, then details-on-demand. We employ multiple coordi-
nated views [4], [5] and use brushing and linking [6]. To
preserve the user’s mental map we introduce the concept of
a graph minimap to provide context information. This min-
imap always shows the whole graph in a smaller view while
a user focuses on parts of it in the node-link diagram. Our
approach is extensible since we rely on common techniques
for the graph layout and its rendering, while further metrics
can be added to support new data sets.

II. RELATED WORK

Graph drawing is a well-established field, with many ways
to visualize relational data and networks directly [7], [8] or
derived from multivariate, temporal data [9]. Typically, a
node-link diagram is used that is laid out in a force-directed
approach [10] or by stress majorization [11], often motivated
by cognitive and aesthetic reasons [12], [13].

Despite sophisticated algorithms, graph layouts still result
in local and global hairball-like structures for complex and
large input data. This visual clutter is undesirable because it
leads to degradation of performance at some exploration and
analysis tasks [2], for example due to many link crossings.
In general, there are many ways to deal with and reduce
visual clutter [14].

Regarding node-link diagrams specifically, there are sev-
eral ways to improve the presentation to reduce visual
clutter and to reveal interesting patterns. Edge bundling is
a prominent method to combine links according to their
hierarchy [15] or in a force-directed manner [16]. Similarly,
Cui et al. [17] bundle links by routing them through points of
a virtual mesh that is modified interactively or automatically.
Several splatting approaches deviate from the typical link
drawing and instead use densities to depict the relations in
the data [18], [19], [20]. Level-of-detail approaches combine
link cumulation with density-based node aggregation [21].
Besides the discussion and analysis in the respective publica-
tions, there are many evaluations on the topic of modifying
links for graph visualization [22], [23].
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Figure 1. An overview of our technique: The graph view shows a node-link diagram and allows standard interaction like zooming, panning, and picking.
The minimap shows a smaller version of the node-link diagram; for orientation, the visible part of the graph is highlighted (focus region). Metric views
can be attached to the sides of the graph view. This additional information cannot be integrated in the node-link diagram itself due to clutter and overdraw.

In addition to adapting the visualization, there are many
interaction techniques to cope with clutter and dense graphs
in general. The MoireGraphs approach [24] arranges nodes
in a radial layout and employs a focus+context metaphor to
show interesting nodes enlarged with their neighborhood.
The EdgeLens method [25] distorts links in the region
of a lens to resolve ambiguities. Similarly, Tominski et
al. [26] allow for local exploration of dense regions in
hierarchies and graph visualization with a fish-eye metaphor.
EdgeAnalyzer [27] is an interaction technique to locally
group links and render them differently so that their paths
can be traced more easily and ambiguities are resolved.

These methods already allow for great flexibility and
freedom when dealing with graphs. Thus, our approach is
complementary to them and tackles the problem of showing
additional information that cannot be included in a node-
link diagram. We achieve this by attaching additional views
on different aspects of the data directly to the node-link
diagram. Our visual design adopts the strategy of multiple
coordinated views [4] that we apply and adapt to the
specific needs of graph visualization. Network visualization
frameworks such as Cytoscape [28] or Gephi [29] are
also designed for graph-related tasks and provide additional
perspectives on the graph data. However, none of them
provides views like ours on the graph data in a similar
way. In short, our Graph Metric Views can be combined
with any variant of node-link diagram and layout method to
facilitate the exploration of complex graphs and additional
information attached to those graphs.

Our visualization technique is loosely related to
NetLens [30], a tool for visual query refinement. It allows the

user to explore relational data by showing different metrics
as bar charts. Through selection and filtering, it is possible
to drill down into many aspects of a data set. In addition to
showing data-related metrics, we also visualize the relational
structure of the data set. Furthermore, we utilize layout-
related as well as graph-theoretic metrics besides data-
inherent information.

Our technique is closely related to VINCENT [31].
There, graphs are laid out radially and have bar charts of
network centralities attached. These centralities are node
metrics based on graph-theoretic properties of a graph,
like the degree or closeness. VINCENT uses histograms of
these centralities but shows them detached from the graph
visualization. Our approach shares the same motivation,
namely that often more information is needed in a graph
visualization than can be meaningfully presented in that
same visualization. Yet, we do not enforce any layout for the
graph and allow for any kind of metric related to the data
set. Furthermore, we attach the histograms directly to the
graph view to allow for visual linking between the metrics
and the node-link diagram.

III. GRAPH METRIC VIEWS

Relational data can be modeled as a (directed) graph
G = (V,E) consisting of n vertices V := {v1, . . . ,vn}.
The set of edges E ⊆ V ×V denotes the relations between
vertices, while their weight w : E −→ R describes another
attribute of the data set. Additional attributes have to be
shown through visualizations of the graph, for example by
laying out the vertices as node-link diagram or by using
different shapes for nodes and edges. In the following, we
denote elements of the abstract graph by vertices and edges,



while nodes and links are used when we refer to the layout
or visual representation of the graph.

Typically, node-link diagrams suffer from visual clutter
and overdraw that are the result of high spatial densities
of elements within regions of the graph. In Section II,
we mentioned techniques to cope with this problem. Yet,
it is not easy to convey further information in node-link
diagrams. Thus our goal was to design a technique that
amends existing node-link diagrams and allows for enriched
interaction methods.

Figure 1 depicts an overview of our visualization tech-
nique. A graph view shows the users’ focus, an interesting
region of a node-link diagram, while the minimap provides
its context. We attach additional linked views to the sides
of the node-link diagram that show arbitrary metrics of the
data and its representation (see Figure 2). These metric views
depict a one-dimensional projection of the display space
of the node-link diagram to one of its axes. Section III-A
describes the different kinds of metrics, while Section III-B
details how these can be visualized.

A. Metric Types

For our metrics, we distinguish between node characteris-
tics and link characteristics. For example, the vertex degree
is a property of nodes, while the edge weight and the link
length are link properties. In both cases, we can identify
three types of metrics that differ in the way their values are
determined.

Layout-related metrics are based on the visual represen-
tation of a graph, i.e., the rendering of the nodes and links
as graphical shapes. As such, these provide straightforward
information, like the number of nodes and links or the sum
of the edge weights along the abscissa or ordinate. They
can be further refined, e.g., by considering or counting only
incoming or outgoing links per node, link intersections, or
angles between links.

Graph-theoretic metrics provide deeper insight into the
relational and hierarchical aspects of graph data sets. While
cliques and communities can often be seen in certain layouts
easily, they may be hard to spot or discern due to clut-
ter and overdraw. Additional metrics like centralities (e.g.,
eccentricity, closeness) are often interesting but cannot be
embedded in the node-link diagram itself if there are no
visual channels available [31]. We show these in our metric
views as supplemental information attached to the original
graph layout.

Data-inherent metrics can be used to correlate arbitrary
values from the data to the layout. As an example, let us
consider a software project where typical call graphs contain
many attributes besides the call relation: file sizes, lines of
code, hierarchy levels, various types of complexity, and so
on. There is also information from the development and
test environment (e.g., execution durations, code coverage)
as well as the version control (e.g., revision count, last

committer). These metrics apply to nodes (e.g., lines of code
of a method) as well as to links (e.g., the distance of two
methods in the package hierarchy).

Since metric values are accumulated layout-related, graph-
theoretic, or data-inherent properties of a graph and its visual
representation, it is possible to further aggregate them by
using the minimum, maximum, or average values instead,
where applicable. For example, the average length of links
can be used as an indicator for the aesthetics of layout
methods.

B. Metric Views

For visualization, the metric values from Section III-A are
accumulated into bins with regard to the display space of a
graph layout, similar to histograms. For this accumulation,
we project nodes and links onto a one-dimensional axis.
Thus, the metric views to the left/right relate to the ordinate
of the node-link diagram, while the views at the top/bottom
relate to the abscissa.

The computation of smooth histograms is a classical
problem of statistical graphics. Typically, kernel density
estimation techniques are employed [32]. For histograms
of node characteristics, we have the traditional problem of
building histograms from point samples. For edge-oriented
metrics, we build the histograms for intervals that correspond
to the projection of the edge to the histogram axis. In either
case, we use a box-filter as kernel, and use pixel-sized bins
for the representation of histograms. The width of the box
filter can be chosen by the user; the default value is given
by the width of the node’s visual shape in image space.

The metric views can be stacked in arbitrary order to allow
for investigation of multiple attributes of the data set and
graph. While we do not limit the number of active views, it is
foreseeable that too many views quickly clutter the display.
On the one hand, users need to decide how many views they
use and how much screen space they allocate. On the other
hand, computing and rendering the metrics can be expensive,
thus slowing down the user interface as a whole. This issue
is alleviated through caching and manual pausing of views,
i.e., users can disable data and visual updates to specific
views if they are too sluggish.

C. Interaction

All views are linked with each other through brushing
and linking. By separate filtering in each metric view, it is
possible to drill down into interesting regions of the graph
that are occluded in the node-link diagram. Furthermore,
marking regions in the metric views highlights the corre-
sponding parts in the graph view so that users can see which
parts of the graph contribute to the metric value. This is
important to mentally link the elements of the node-link
diagram to peaks or other visual features in the metric views.
Additionally, visual elements of the graph that have been
highlighted through selection in a metric view can be used to



Figure 2. Multiple graph metric views can be shown in arbitrary order at the sides of the graph view for additional information. Resizing those increases
their readability but decreases the available space for the graph view. Users resolve this trade-off by manually arranging the metric views and their sizes.

filter the graph itself. For example, nodes that are not marked
can be hidden, while marked nodes (and their neighborhood)
will remain visible.

The users’ focus is the graph and its visual representation,
respectively, which typically employs most of the screen-
space (see Figure 1). Exploration is possible through typical
navigation like scrolling, zooming, picking, and filtering.
Interactions with the graph view automatically update all
metric views so that these always correspond to the visible
area of the graph. Furthermore, interactions with the metric
views affect the graph view, for example scrolling in the
metric view or highlighting regions.

To preserve the users’ mental map, we provide a minimap
of the whole graph (see bottom left of Figure 1). This shows
also the context of the graph view in which the visible region
is highlighted. Users can navigate the graph through the
minimap in the same way as through the graph view (i.e.,
zooming, panning), which in turn updates the graph view as
well as the metric views.

Information like node labels and edge weights are avail-
able as tooltips on-demand. Metadata and settings—for
example vertex and edge count, or the layout used—can be
shown as overlay anytime. Through saving the graph fully
or partially along with the configuration of the metric views,
it is possible to collaborate or continue an analysis at a later

point in time.

D. Implementation Details

We implemented our technique using C++11 and Qt
5.1. The igraph [33] library is used for all graph-theoretic
operations and computing the layouts. While igraph is
highly flexible, it is a single-threaded CPU-only library.
Thus, computing layouts of large graphs or finding cliques
might take a long time. To improve the responsiveness
of the user interface we moved all igraph operations to a
dedicated thread. A progress bar coupled to igraph’s built-in
progress reporting informs the user about the status of these
operations. For example, while cliques are sought, we can
still navigate the graph or interact with the metric views.

IV. CASE STUDY

We demonstrate how our visualization approach can be
used for a typical real-world problem of visual graph
analysis in the field of software engineering. In software
systems, it is important to analyze properties like coupling
and dependencies. These systems are often modeled as
directed call graphs where vertices represent full-qualified
method names. Edges between two vertices represent the
source method calling the target method.



Figure 3. A software call graph depicting the frequency of method calls. The edge weight was mapped to a topological color table, thus red links indicate
the most frequent calls. The metric views show (from outermost to innermost metric) the average and maximum package distance, as well as the number
of edges. Through selection in the metric views, the interesting region in the node-link diagram is visually linked to the software metrics.

Figure 3 shows such a call graph of Cobertura1, a code
coverage tool for Java. At this stage, the analyst does not
know details about the data set, except for very basic high-
level information: It is a directed graph with 5,000 vertices
and 11,319 edges, each vertex contains the name of a method
and its package, and edge weights represent the number of
times a method called another one. Now, the analyst wants to
obtain insights into that data set, following the Information
Seeking Mantra [3]. We use a Fruchterman-Reingold [10]
layout to find methods that call many other methods; such
dense areas indicate high coupling, which is unfavorable
in software engineering. Yet, from the initial layout it is
unclear from which packages these methods originate, i.e.,
from the Java SDK, the Cobertura developers, or some third
party dependencies. Though this information is important, it
cannot be embedded into the graph layout easily.

We use a topographic color coding, mapping low edge
weights to blue, medium weights to green, and high weights
to red. This way, we can immediately spot an area with
many red links (see Figure 3), which indicate the highest
method call frequency and should be investigated first. To
explore this area we attach a data-specific metric that shows
the distance in the package hierarchy between two nodes as

1http://cobertura.github.io/cobertura/

property of the links. We use both the average as well as
maximum package distance to reveal outliers that might be
concealed in the average (see the outer metrics in Figure 3).
This reveals some interesting patterns in the metrics, for
example two peaks in the average package distance near the
region with the red links. To find out whether these peaks
are due to the high density of links in that area, we attach
a layout-related metric for the number of edges (see the
innermost metric in Figure 3). We see that the peaks are
in fact within regions with few links and thus few method
calls. We assume that these must be very specific methods
that gather information from many places, since they have
high package distance and call each other frequently, but not
as often as other methods.

To further investigate this, we highlight the peaks in the
metric views to correlate them to the node-link diagram.
Then we zoom into this region, which updates the metric
views, revealing new peaks. We repeat this process until
we reach a view of the graph where the second metric, the
maximum package distance, is constant for the visible part
of the node-link diagram (see Figure 4(a)). Subsequently we
remove that metric view, since it serves no purpose at this
point. The metric values are very similar in this region, so
we filter on the metric views to only show regions where



(a) (b)

(c) (d)
Figure 4. Exploration of the region with the most frequent method calls. (a) The visible part of the node-link diagram mostly contains calls with the
highest package distance. (b) Filtering on the metric views allows us to find the regions in the node-link diagram that contain the highest average package
distances. Parts of the node-link diagram that were not selected have been hidden. (c) A metric has been attached to show the package depth of the methods.
(d) The data set has been reduced to few methods which can be investigated manually and looked up in the source code.

the average package distance is above a threshold. To further
improve the view on the graph we hide all nodes and links
that are not highlighted by any metric view (see Figure 4(b)).

Our focus is now on a region with high average package
distance as well as few links (with respect to the rest of
the node-link diagram). We now replace the edge count
metric with the node metric that represents the maximum
hierarchy level of methods (see Figure 4(c)). We spot
an outlier (a singular method with the highest hierarchy
level in this part of the node-link diagram) and can eas-
ily identify the method as CopyFiles.copy in the package
net.sourceforge.cobertura.reporting.html.files, which is not
called often. Finally, we increase the thresholds gradually
on the metric views and mark the new peaks. Now only few
methods are left for consideration (see Figure 4(d)), which
can be inspected manually through their tooltips. At this
point the analyst can look up these methods in the source
code to understand their behavior.

In conclusion, our approach allows for top-down inter-
action to match structures of the node-link diagram to the
metric views as well as vice versa. This interaction between

metric views and node-link diagram allows for a drill-
down into large data sets. Visual signatures and prevalent
structures can be found in the node-link diagram (cluster-
like structures) and correlated to the metric views (intervals
with high values). Furthermore, outliers are visible as peaks
in the metric views as well as in the node-link diagram as
links with substantially different colors than the others. Most
importantly, our metric views show attributes of the data that
were not visible before.

V. LIMITATIONS

A problem of our approach is rooted in the position
of our metric views. Let us assume a node-link diagram
with two dense regions in the same vertical area. While a
vertical metric view will accumulate the values correctly, it is
impossible to discern the contributions of the clusters, since
they are in the same region of the metric. This ambiguity
can already be resolved, for example by moving one cluster
out of the graph view, so that their contribution to the metric
can be seen separately. Alternatively one can add the same
metric horizontally and highlight the affected regions; note
though that this fails if there are also nodes or links in that



region that are not part of the cluster. In essence, this is a
drawback we need to investigate further, possibly employing
a user study with different scenarios.

The metric views are drawn at the sides of the graph
view by design, but this is also problematic in some ways.
For one, metric views become harder to read with each
additional metric view for a given side of the graph view.
Then, resizing those metric views to improve the readability
reduces the available screen space for the graph. This
is a trade-off between available space on the screen and
the usability of our approach. We need to investigate this
phenomenon in a user study to determine when the usability
falls off and the metric views become impractical.

As we detailed in Section III-B, some metrics are expen-
sive, for example calculating link intersections (quadratic
complexity) and finding shortest paths for each node. This
disrupts the user experience and slows the graph exploration
down due to an unresponsive user interface. On the one hand,
users can disable offending metrics and enable them later on.
On the other hand, it is not obvious which metrics to disable,
since their slowness might depend on the graph, its under-
lying data, and the metric itself. Additionally, the overall
user experience is influenced by the compute-intensity and
number of active metrics. A reasonable approach could be to
monitor the runtime for each metric calculation and disable
those above a threshold when many updates or interactions
are queued.

VI. SUMMARY AND FUTURE WORK

In this paper, we have introduced Graph Metric Views:
supplemental views to a node-link diagram that show various
metrics related to network data. The main advantage of our
approach is that we show additional information of such data
sets that cannot be integrated into the node-link diagram due
to visual clutter and exhaustion of visual channels. Thus
we can reveal patterns that would otherwise be hidden in
hairball-like structures or are not visible at all. We com-
plement existing graph drawing techniques by basing our
metrics on layout-related attributes of the node-link diagram,
graph-theoretic properties, and data-inherent information.
Using the metric views, we can explore aesthetics criteria
for graph visualization as well as drill into unknown data
sets easily. Our coordinated views are connected through
brushing and linking, resulting in an interactive technique for
analysis of local and global properties of graphs. We have
illustrated the usefulness of this graph analysis approach by
exploring a software call graph.

In future work, we will evaluate our technique in a con-
trolled user study with typical tasks that are required when
reading and understanding graph structures. We also want
to extend our approach to dynamic graphs, i.e., those that
change over time, and investigate how it applies to further
layouts and non-traditional graph visualizations. Finally, we

plan to look into further, more complex metrics as well as
alternative visualizations of the metrics themselves.
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