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Visual Adjacency Lists for Dynamic Graphs
Marcel Hlawatsch, Michael Burch, and Daniel Weiskopf, Member, IEEE Computer Society

Abstract—We present a visual representation for dynamic, weighted graphs based on the concept of adjacency lists. Two
orthogonal axes are used: one for all nodes of the displayed graph, the other for the corresponding links. Colors and labels are
employed to identify the nodes. The usage of color allows us to scale the visualization to single pixel level for large graphs. In
contrast to other techniques, we employ an asymmetric mapping that results in an aligned and compact representation of links.
Our approach is independent of the specific properties of the graph to be visualized, but certain graphs and tasks benefit from the
asymmetry. As we show in our results, the strength of our technique is the visualization of dynamic graphs. In particular, sparse
graphs benefit from the compact representation. Furthermore, our approach uses visual encoding by size to represent weights
and therefore allows easy quantification and comparison. We evaluate our approach in a quantitative user study that confirms
the suitability for dynamic and weighted graphs. Finally, we demonstrate our approach for two examples of dynamic graphs.

Index Terms—Graph visualization, weighted graphs, dynamic graphs, adjacency lists
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1 INTRODUCTION

MANY visualization techniques exist for the anal-
ysis and exploration of static graphs [1], [2]. A

prominent visual metaphor is the node-link diagram,
which can become cluttered for dense graphs [3]. In
contrast, matrix representations result in clutter-free
diagrams but may require more space. Furthermore,
it is difficult to compare and aggregate the weights of
links with both representations.

An even more challenging task is the visualization
of dynamic graphs. An animated sequence of node-
link diagrams is intuitive, albeit questionable in many
cases [4]. Static diagrams allow a better comparison of
subsequent time steps as demonstrated for node-link
diagrams [5] and matrix-based visualizations [6].

We introduce a novel approach to visualizing dy-
namic graphs exploiting the concept of adjacency lists.
By using a list-based representation, we achieve a
compact and clutter-free graph visualization. Further-
more, we are able to analyze evolving graphs in a
side-by-side display, focusing on the investigation of
dynamic weights and link duration. We evaluate and
compare our approach with node-link diagrams and
adjacency matrices in a quantitative user study. We
further illustrate the utility with two case studies:
dynamic data representing worldwide migration and
the temporal evolution of a visualization workflow.

2 RELATED WORK

Visualizing dynamic graphs is typically done by a
natural time-to-time mapping exploiting the concept
of animation. Two sub-concepts exist: The first re-
quires the whole graph sequence in advance, denoted
as off-line dynamic graph visualization [7], [8], [9].
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Complementing that, online dynamic graph visual-
ization [10], [11] just requires the next element of the
sequence at the time when it is rendered. Both ap-
proaches are subject to high algorithmic complexity to
produce aesthetically pleasing graph layouts [12], [13],
[14], [15] that preserve the viewer’s mental map [16]
and achieve a high degree of dynamic stability [17].
Extraction and visualization of clusters can also be
done for dynamic graphs [18], [19]; recent work also
considers the dynamics of associated attributes [20].

Our visualization technique is based on a static
representation for dynamic graphs, i.e., a time-to-
space mapping. This is a common concept in the
visualization of time-dependent data [21], often real-
ized by using bars or timelines [22], [23], [24], [25].
One of our layout variants results in a visualization
similar to Gantt charts [26]. However, to the best of
our knowledge, none of the above charts or diagrams
have been applied before to show the structure of
dynamic graphs. The static visual representation has
several benefits: Graphs can be compared visually
and the viewers do not have to rely on their short
term memory [4], [27] as it would be required with
animation. The mental map is preserved and dynamic
stability is achieved, which also allows for easy inte-
gration of interaction techniques.

The concept of static diagrams for time-varying
node-link diagrams has recently been used in
TimeArcTrees [28]. Another example of static visu-
alization relying on the node-link visual metaphor
is parallel edge splatting [5]. A further possibility
is to use a layered approach of node-link diagrams
for visually encoding the dynamics of a network in
a stacked 3D representation [29]. Finally, a hybrid
approach combining animated and static node-link
visualization was recently presented [30].

For dense graphs, matrix-based representations are
more suitable [31]. However, they exhibit problems
when dealing with path-related tasks such as finding
a shortest route from a source to a target node. Matrix
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Fig. 1: Concept of visual adjacency lists. Our example graph is
shown with the classic node-link diagram (left) and with the visual
adjacency list (right). Our list-based approach uses two orthogonal
axes: one axis for all nodes in the graph (vertical), and one axis for
the corresponding target nodes of outgoing links (horizontal). Links
are defined by their vertical position relative to the node axis and
their label, e.g., node “A” has outgoing links to “B”, “C”, and “D”.

visualizations hence trade visual clutter for path read-
ing problems. In the case of layered graphs, Quilts [32]
are an approach to visualizing them with a compact
matrix-based layout. DAGView [33] uses a combina-
tion of node-link and matrix representation. Generally,
matrix-based techniques can visually encode dynamic
graphs [6], [34], [35] in a space-filling and clutter-
free approach to illustrate time-varying weights by
attaching the time axis to each of the matrix cells.

In contrast, our approach uses a list-based rep-
resentation and is not specifically designed for a
certain type of graph. This representation shares a
few characteristics of matrix techniques: it avoids
link crossings, but following paths is difficult (see
Section 7). However, the list approach results in a
more compact visualization, which is especially useful
for sparse graphs and dynamic data.

3 VISUALIZATION OF STATIC GRAPHS

Our graph visualization is based on adjacency lists,
which is a well-known concept for graph representa-
tion [36]. However, adjacency lists are typically only
used to internally represent graphs in computer mem-
ory and algorithms. We use them now to generate
a visual representation of the graph, called visual
adjacency list (Figure 1). We choose two orthogonal
axes for our list, but the concept is not restricted to
this; other layouts like radial approaches are possible.

Nodes are represented by graphical primitives,
called node elements, which can have a label and/or a
color. We use box shapes for the node elements. Links
are represented by the node elements of the target
nodes. We decided to list all nodes of the graph on a
vertical axis and list the target nodes of their outgoing
links on a horizontal axis. Labels specify the target
nodes. With this layout, people used to reading from
left to right can intuitively read the list.

Typical graph visualization techniques like node-
link or adjacency matrix visualizations are symmetric
with respect to links: source and target of a link are
represented with the same visual encoding. In con-
trast, our proposed layout results in an asymmetric
representation of links. While the source nodes are
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Fig. 2: Relationship between adjacency matrix and list. The adja-
cency list can be derived from the adjacency matrix by shifting all
entries to the left until there are no gaps (and by labeling the entries).
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Fig. 3: Axis for incoming links and color coding. Incoming links can
be explicitly represented with an additional axis (to the left here) to
support tasks on them. Node “A” has, e.g., only one incoming link
from node “B” (see Figure 1, left). To improve scalability, colors are
used in addition to labels to specify nodes; they are still recognizable
when scaling down the graph. The color map is defined on the node
axis in the center. Increasing the width of the node axis visually
separates it from the link axes even on zoomed-out levels (right).

spatially arranged, the target nodes of links are only
encoded with labels and/or colors. In this way, the
visualization is more focused on source nodes and
more suitable for tasks centered on them.

As a consequence of the underlying concept of
adjacency lists, this visualization is a complete rep-
resentation of an unweighted graph. It is directly
applicable to both directed and undirected graphs.
We discuss the inclusion of weights in Section 3.4.
Furthermore, adjacency matrices and lists are strongly
related (Figure 2). The list can be regarded as a version
of a matrix without gaps because the horizontal posi-
tion is not required to specify links. Therefore, the list
can be derived from the matrix by shifting the entries
to the node axis, removing all gaps in between, and
the matrix can be derived from the list by assigning
the proper horizontal positions to the node elements.

3.1 Incoming Links
With the current representation, it is hard to extract all
incoming links of a specific node because the whole
list has to be read. Hence, this operation is linear in the
number of all links, while extracting all outgoing links
of a specific node is only linear in the number of the
outgoing links of that node. To improve on this, we
explicitly represent incoming links with an additional
horizontal axis from the center to the left (Figure 3). In
this way, the reading scheme for links remains from
left to right, i.e., source nodes are always located left
from target nodes. Since the node axis is now placed
in the center, it should be visually separated from the
link axes. To this end, we increase the size of the node
axis to support scalability to large graphs.

The explicit representation of incoming links dou-
bles the spatial extent, but the completion of many
tasks related to incoming links is accelerated.
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Fig. 4: Scalability of adjacency lists (a, c, e) and matrices (b, d, f) with respect to the number of nodes. Synthetic graphs with the same
link structure and increasing node count ((a, b): 40 nodes, (c, d): 200 nodes, (e, f): 1000 nodes) were generated. Large-scale structures are
visible independently of the node count. However, with increasing node count, the structures become clearer with both types of visualizations.

(a) (b) (c) (d) (e) (f)

Fig. 5: Scalability of adjacency lists (a, c, e) and matrices (b, d, f) with respect to increasing number of clusters (from left to right) in synthetic
graphs with fixed node count (1000). Even nearby cluster structures can be differentiated in adjacency matrices. This is not possible with
adjacency lists due to the color encoding. Only structures with a larger distance with respect to the node order can be differentiated there.

3.2 Scalability

So far, target nodes of outgoing links (and source
nodes of incoming links) are only specified by their
labels. This poses scalability problems: the visualiza-
tion scales only to a size, for which the labels are still
readable. To improve scalability, we additionally use
color to represent nodes (Figure 3). The color map
is defined and shown on the node axis. With color
coding, the visualization scales up to a level at which
a node is represented by a single pixel. Going to the
sub-pixel level, where several nodes are represented
by a single pixel, requires appropriate schemes to
select the color of this pixel and is part of future work.

So far, we use standard interaction techniques:
zooming and panning, and displaying tooltips. Specif-
ically designed interaction techniques, e.g., zoom
lenses or highlighting, may further improve the work
with large graphs and are part of future work.

For a more detailed discussion of the scalability of
our approach, we compare visual adjacency lists with
adjacency matrices because of their close relationship
(see Figure 2). Figures 4 and 5 show results for both
techniques for synthetic graphs with varying node
count or numbers of clusters. The graphs were gener-
ated from the adjacency matrices to avoid issues with
row and column ordering. For the basic graph struc-
ture, links between randomly selected nodes were cre-
ated, using uniformly distributed random numbers,
until the given link density was reached. To generate
the cluster structures, this procedure was repeated in
subareas of the matrix with a higher density.

In the first case, the link structure and density
was kept constant, only the node count was changed
(Figure 4). We can see that even in the case of small
graphs (Figures 4(a) and 4(b)), identifying individ-
ual nodes or links requires interaction on typical

aggregation 

Fig. 6: Aggregation for adjacency lists. To improve the analysis of
large graphs (left), nodes and the respective links are aggregated.
The resulting adjacency list (right) shows the representatives of the
aggregated nodes and their links. The aggregated number of links or
weights are shown with horizontal weight mapping (see Section 3.4).

displays—regardless of the chosen technique. Large
scale structures, however, are directly visible in both
visualizations. They even tend to appear clearer in
graphs with higher node count (Figures 4(e) and 4(f)).
The difference between both techniques is that the
color coding of visual adjacency lists usually provides
a lower resolution on typical output devices than
the spatial encoding of adjacency matrices. Therefore,
the scalability of adjacency matrices with respect to
the number of cluster structures (Figure 5) is better.
While small and nearby structures are still visible and
distinguishable in adjacency matrices (Figure 5(f)),
this is not the case for adjacency lists (Figure 5(e)).

In summary, directly applying visual adjacency lists
to large graphs can provide only an overview of
large scale structures. They offer good scalability with
respect to the number of nodes. However, the repre-
sentation of cluster structures is of lower resolution
compared to adjacency matrices. Similar to many
other techniques, a more detailed representation of
large graphs requires their aggregation (Figure 6).

3.3 Flexibility
There are two constraints in our approach for defining
links. First, target nodes must have the correct posi-
tion with respect to the node axis to identify source
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Fig. 7: Flexibility in link representation. Since links are defined by the
associated row in the list and labels/colors, flexibility remains in the
position and size of node elements. Node elements can be moved
and scaled as long as they stay inside the respective row.

nodes (Figure 7), i.e., the node element of the target
node must be in the correct row to be associated with
the respective source node. Second, the node element
is assigned with the label and color of the target node.

This leaves some flexibility to the size and position
of the node element. In principle, the size in x-
direction (sizex) is not restricted. However, the visual-
ization becomes more difficult to read with increasing
size. In y-direction, the size (sizey) is restricted by the
size of the row, but the row size (sizerow) does not
have to be uniform and can vary from row to row.
This is used, e.g., for the Gantt layout in Section 4.2.

The position of the node element in x-direction is
only required to be to the right of the node axis in case
of outgoing links (and to the left in case of incoming
links). If sizey < sizerow, the position in y-direction is
also flexible, as long as the node element stays inside
the respective row. This is again used in Section 4.2.

3.4 Weighted Links
The previously described flexibility for the node ele-
ments can also be used to visualize weighted graphs.
We have chosen two different ways to incorporate
weighted links (Figure 8). In both cases, the weight
is mapped to the size of the node element in one
dimension, which is a concept similar to bar charts.
The advantage of this is that the weights can be easily
quantified and compared [37], [38].

The first variant uses horizontal weight mapping,
i.e, the weight is mapped to sizex of node elements
(Figure 8(a)). In this case, there must not be any gaps
between the node elements in a row. This results in a
representation similar to a stacked bar chart. Weights
for different rows can be compared and the sum over
all weights is visible. However, it is more difficult to
compare the weights inside a row. Furthermore, it can
be misleading to use a non-linear scale (e.g., loga-
rithmic), because the total size does not correspond
anymore to the sum over all weights.

The second variant uses vertical weight mapping,
i.e, the weight is mapped to sizey of node elements
(Figure 8(b)). In this case, the weights have to be
normalized in a way that the node elements do not
exceed the row size. This normalization can be done
by considering the maximum weight inside the row
only or over all rows. In the case of dynamic graphs,
the normalization can also consider all time steps. De-
pending on the choice of normalization, the weights
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Fig. 8: Weight representation in visual adjacency lists. (a) Weights
can be mapped to sizex of the node elements. The summed weight
of all outgoing links can be derived from the visualization. (b) Weights
can be mapped to sizey of the node elements. In this case, the
weights have to be normalized so that the node elements stay in
their row to meet the constraints from Section 3.3.

can be compared only inside a single row, or between
rows, or, in the case of dynamic graphs, even between
time steps. With the second variant, weights inside
a row can be easily compared. Furthermore, non-
linear scales can be used. However, the sum over all
weights is not visible, it is difficult to compare weights
between rows, and the weights are not visible when
scaling to single pixel level.

Similar approaches may be used to represent
weighted nodes, but this rather uncommon case is
beyond the scope of this paper.

3.5 Node Order and Color Coding

Order and color coding of the nodes have a huge
impact on the resulting visualization and influence
the identification of graph structures, especially on the
overview level. They typically go hand in hand, since
color coding is applied after ordering the nodes on
the node axis. A good combination of node order and
color coding supports the analysis of the graph.

Ordering the nodes on the node axis and the links
along the link axis is independent from each other
and flexible. Even ordering the links in every row
differently would result in a correct representation of
the graph. In this case, however, it is very difficult to
see similarities in different rows and detect clusters.
It is therefore important to find an adequate ordering
for the node axis. Along the link axis, it is reasonable
to use the same ordering as for the node axis.

A simple scheme is to order with respect to certain
properties of the graph. For example, the nodes can be
ordered according to the number or summed weight
of outgoing or incoming links. If nodes exhibit certain
semantics or hierarchies, it is reasonable to order them
accordingly if possible: we order the nodes of the
visualization workflow in Section 6.3 according to
the classic visualization pipeline [39]. More advanced
ordering methods are outside the scope of this paper
and may be inspired by reordering methods for adja-
cency matrices [40], [41]. Furthermore, graph cluster-
ing methods [42] can be used to create hierarchies.

It is reasonable to also use the hierarchy for the
color coding of the nodes. For the visualization work-
flow, we use, e.g., four base colors for the four groups
of nodes (see Figure 18(b)). Inside these groups, we
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Fig. 9: Visual adjacency lists for dynamic graphs. (a) Our example
graph consists of four time steps. (b) Visual adjacency lists display
the individual time steps next to each other; incoming and outgoing
links are grouped and time grows from the center to the outside.

modulate the brightness of the base color according
to the position of the nodes inside the group.

The node order and color coding may be inter-
actively changed by the user. By this, the user can
filter or emphasize certain elements and may reveal
different aspects of the graph, such as highlighting all
links from and to a selected node.

4 DYNAMIC GRAPHS

To extend our concept for dynamic graphs, we exploit
the compactness of our visual representation to create
a static image of the full graph sequence. It is also pos-
sible to combine visual adjacency lists with animation,
with all its advantages and disadvantages. However,
we focus on static visualization in this paper.

4.1 Discrete Time Visualization
Visual adjacency lists can be directly adopted for
dynamic graphs by putting links for varying times
side-by-side (Figure 9). Here, we assume that time is
discretized so that clearly separated time steps can be
shown. Although the node and link structure can be
dynamic, we assume that only the time spans of links
are of interest and therefore use the union of all nodes
from all time steps in the visualization.

Our layout positions the node axis in the center and
groups the time steps of incoming (left) and outgoing
(right) links. Time evolves from the center to the out-
side. Slight changes in the background color and small
offsets visually separate the time steps. Furthermore,
by normalizing with the maximum number of links
or total weight, a uniform width of the time steps can
be achieved. This is used in Figure 15.

The advantage of this layout is that it is easy to
analyze the evolution of incoming and outgoing links.
Furthermore, the symmetry of the concept remains
for all time steps. However, it is difficult to compare
the incoming and outgoing links of a specific time
step. Additionally, the direction of increasing time
is different for the two types of links, which is less
intuitive to read. Therefore, other layouts are possible,
e.g., the incoming and outgoing links of each time step
can be grouped with time evolving from left to right.
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Fig. 10: Gantt layout. (a) It is possible to subdivide the row for a
single node, so that every link has its own sub-row. (b) In this case,
if a single link exists for several time steps, it is visually connected
through these time steps. The result is a visualization similar to Gantt
charts, displaying the time spans of the different links.

Finally, it is quite difficult to track a single link
over time. Its relative position on the link axis can
vary in every time step due to links appearing or
disappearing. Hence, at least parts of the link list have
to be scanned in each time step. This can be even more
difficult if links are only identified by colors. There-
fore, we have developed another layout for sparse and
dynamic graphs described in the following.

4.2 Gantt Layout

With the above approach, dynamic graphs can be
displayed and analyzed, but certain tasks are still
time-consuming. This is especially the case for tasks
related to the time span of links because all links of
an individual node are horizontally stacked. Hence,
deciding if a link exists at a specific time step requires
scanning all links of the respective node.

To address this problem, a variant similar to Gantt
charts can be created for sparse graphs (Figure 10),
which exploits the flexibility discussed in Section 3.3.
As already mentioned, the size of the individual rows
can vary. Therefore, it is possible to vertically stack
all links of an individual node inside its respective
row (Figure 10(a)). Drawing the time steps next to
each other, time spans are represented by bars that
result from the merging of neighboring node elements
(Figure 10(b)). Time grows from the center to the left
(incoming links) and to the right (outgoing links).

With this visualization scheme, time spans can be
easily analyzed even in graphs with many time steps
and it is possible to detect temporal clusters, i.e.,
links with identical time spans (see Figure 14(b)). The
layout scales well with the time discretization. It does
not even require time discretization, it is possible
to represent time spans on a continuous time scale.
Another interesting property is that the height of a
row corresponds to the number of links summed up
over time. Hence, we can see which nodes have a high
number of links over the full time range of the data.

However, this representation requires usually more
rows, depending on the number of links per node. It
is therefore only suitable for sparse graphs like the
visualization workflow shown in Section 6.3. There,
the space requirements change like this: The normal
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layout requires 61 rows (one for every node) and 529
columns for incoming and outgoing links. Most of
the time steps require more than one column because
at least one node exhibits multiple links. The Gantt
layout requires 121 rows because the nodes with
multiple links require multiple rows. However, only
252 columns are required, twice the number of time
steps because incoming and outgoing links are shown.
Furthermore, in the case of the normal layout, we use
some extra space in the columns to visually separate
the individual time steps. Hence, for this dynamic
graph, the Gantt layout requires twice the space in
vertical direction but less than half of the space in
horizontal direction (compare Figures 17 and 18).

Other issues are that representing weights by scal-
ing the node elements in x-direction reduces the effect
of visual fusion between neighboring time steps. Fur-
thermore, the direction of increasing time is different
for incoming and outgoing links.

5 USER STUDY

We conducted an objective and quantitative labora-
tory user study to compare our technique with two
standard graph visualization techniques for four dif-
ferent tasks and two data set sizes. We used a within-
subjects study design based on repeated measures.
Separately for each task, two independent variables
are of interest in the study: the visualization technique
and the graph size.

5.1 Stimuli and Tasks

We compared three different graph visualization tech-
niques: visual adjacency lists, adjacency matrices,
and node-link diagrams. Four different tasks for two
graph sizes (small: 8 nodes, 22 to 40 links; large: 20
nodes, 147 to 264 links) were investigated:

• Task 1: Decide if a link exists between the two
marked nodes.

• Task 2: Decide if incoming or outgoing links are
more equally distributed over the nodes.

• Task 3: Select the node, where the weights of its
incoming links cover the largest value range.

• Task 4: Select the node, where the weights of all
incoming links have a large increase between two
subsequent time steps.

The first two tasks were performed on static un-
weighted graphs, the third on static weighted graphs,
and the last task on dynamic weighted graphs. Ac-
cording to the task taxonomy for graphs by Lee
et al. [43], the first two tasks are topology-based,
whereas the last two tasks are attribute-based. There-
fore, our selection covers typical and representative
tasks on graphs. Furthermore, all tasks except for
the first one can be seen as overview tasks that re-
quire the exploration of the complete graph structure.
These tasks were chosen to test the suitability of

(a) (b) (c)

Fig. 11: Examples of stimuli of the user study for a graph from
Task 3: (a) visual adjacency list, (b) adjacency matrix, (c) node-link
visualization.

our approach for tasks related to the connectivity
and weights of graphs. Furthermore, we wanted to
evaluate its suitability for time-discretized data. We
have chosen time-discrete data because it is generic
(it can be obtained even from time-continuous data by
temporal sampling) and it is also supported by pre-
vious dynamic graph visualization techniques based
on node-link and adjacency matrix diagrams. Our hy-
pothesis is that visual adjacency lists are more suitable
for Tasks 2–4 due to their asymmetric mapping, and
that especially dynamic graphs benefit. However, we
wanted to perform a general evaluation and test our
approach also for static graphs.

Since we wanted to keep the overall study duration
around one hour to avoid boredom and fatigue, we
were only able to test a small set of tasks. Besides
Task 1, tasks were chosen that we expected to be suit-
able for visual adjacency lists to test our hypothesis
that there are tasks that benefit from our approach.
The goal of the study was not to provide a general
in-depth comparison of our approach with adjacency
matrices and node-link diagrams.

The reason for using rather small graphs is that
we wanted to avoid the use of interaction techniques.
Interaction would introduce another degree of free-
dom in the study design and it is not trivial to select
adequate interaction techniques for a fair comparison.
Furthermore, we first wanted to test the capability of
our method for small graphs before doing the next
step and going to large graphs. We used dense graphs
in favor of adjacency matrices to obtain more general
results. Since the layout of visual adjacency lists bene-
fits from a low number of links, the respective results
for sparse graphs should not be worse.

Every task had to be performed on every combi-
nation of technique and graph size. The task order
was fixed. The order of techniques and graph sizes
were counterbalanced to avoid learning effects. For
every task, a set of 10 different graphs were randomly
generated for both graph sizes. Five different graphs
were randomly selected from 9 graphs of the set; the
tenth graph was used for the test cycle. Hence, all vi-
sualization techniques were applied to the same data.
Overall, 120 stimuli were tested for each participant.

Figure 11 shows examples of the visualization stim-
uli. Adjacency lists use the vertical mapping (Sec-
tion 3.4) to represent weights, adjacency matrices the
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Fig. 12: Error rates from the user study. Bars are grouped according to the graph size to show the scalability of the methods.

linear color map shown, and the node-link visualiza-
tion the line thickness of links in addition to the color
map. Links in the node-link visualization are sorted
according to their weight before drawing; links with
smallest weights are drawn last on top of the others.
This improves the detection of low weighted links. In
the case of dynamic graphs, the adjacency list visual-
ization uses the discrete time layout (see Section 4.1).
The other two techniques showed the individual time
steps from left to the right next to each other as
small multiples. The node-link layout was generated
with the Fruchterman-Reingold algorithm [44] imple-
mented in the Open Graph Drawing Framework [45].
To allow for a fair comparison, we removed the labels
for the links in the visual adjacency lists. Furthermore,
we designed weight related-tasks in favor of the node-
link visualization by restricting them to incoming
links. Hence, the participants could concentrate on the
arrowheads of the link representation.

5.2 Participants
26 students from our university participated. 85% of
them had a major in computer science, sciences, or
engineering; 77% had knowledge of graphs, but only
38% had experience with visualization. They were
compensated with 10 e each.

5.3 Study Procedure
First, the participants had to fill out a questionnaire
about their personal background, then they were
tested for visual acuity (Snellen chart) and color blind-
ness (Ishihara test). Short introductions to graphs and
the visualization techniques used were given, before
the participants had to solve the tasks. Each upcoming
task was explained to the participants. Then, they
performed a test cycle with the tool for one example
graph for each graph size and visualization technique.
The correct answers were displayed during the test
cycle. When the participants confirmed that they un-
derstood the task, they continued with the measured
task cycle. They had to click a button to activate
the next graph visualization and time measurement.
Once they had found the answer, they clicked the
button again. Then, the graph visualization disap-
peared, time measurement stopped, and buttons to

input the answer appeared. Thus, finding the correct
answer button did not influence the time measure-
ment. The participants were asked to solve all tasks
as accurately as possible; the answer time serves only
as a secondary dependent variable. After completing
all four tasks, the participants filled out a further
questionnaire, in which they rated the suitability of
the different techniques for the different tasks on a
Likert scale ranging from 1 (good) to 5 (bad). The full
study required around one hour on average.

5.4 Results

We removed the data of one color-blind person be-
cause color was used for all techniques. However,
looking at the results, it is interesting to see that this
participant could solve all tasks with visual adjacency
lists correctly. We also removed data from a partici-
pant with low visual acuity. Hence, the results from
24 participants were analyzed.

The measured error rates, which are the percent-
age of wrong answers, are shown in Figure 12. The
Shapiro-Wilk test rejected normal distribution for all
data and the Kruskal-Wallis test revealed that sig-
nificance (p < 0.05) between techniques occurs only
in Task 2 for small and large graphs (Figure 12(b)),
in Task 3 for small and large graphs (Figure 12(c)),
and in Task 4 for large graphs (Figure 12(d), dark
bars). According to the posthoc Wilcoxon rank-sum
test (p < 0.05), adjacency lists provide significant
lower error rates for both sizes in Task 2; there is no
significant difference between adjacency matrices and
node-link visualization. In the case of Task 3, there is
no significant difference between adjacency lists and
matrices, but node-link visualization has significantly
higher error rates, again for both sizes. Finally, for
the large graph in Task 4, node-link visualization has
significantly higher error rates than adjacency lists,
but there is no difference between the other pairings.
We can see that adjacency lists always have an error
rate below 10%, in most cases even below 5%, and
they exhibit the lowest error rates of all techniques
in many cases. Especially for Task 2, where the dis-
tribution of the number of links has to be analyzed,
only adjacency lists provide a visual representation to
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Fig. 13: Answer times (in seconds) from the user study shown with box plots; red dots represent average values.

accurately solve the task. In this case, the graph size
also had no measurable influence on the accuracy.

The measured answer times are shown in Figure 13.
They do not exhibit a normal distribution according to
the Shapiro-Wilk test. The Kruskal-Wallis test shows
a significant (p < 0.05) difference in all cases; posthoc
pairwise comparison was then performed with the
Wilcoxon rank-sum test. A significant (p < 0.05)
difference between all techniques occurs in: Task 2
small graph (Figure 13(b), light boxes), Task 3 small
and large graph (Figure 13(c)), Task 4 small graph
(Figure 13(d), light boxes). In the case of Task 1 large
graph (Figure 13(a), dark boxes), Task 2 large graph
(Figure 13(b), dark boxes), and Task 4 large graph
(Figure 13(d), dark boxes), there is only a significant
difference between adjacency lists and the other two
techniques. For the small graph in Task 1 (Figure 13(a),
light boxes), only the answer times of the node-link
visualization are significantly faster. While adjacency
lists have the slowest answer times in Task 1, where
the existence of a link between two nodes had to be
determined, they lead to faster answer times than the
other techniques in the case of Tasks 2 and 4. It is also
interesting to see that the answer times with adjacency
lists did not increase for the large graph in Task 2.

5.5 Discussion
The study shows that visual adjacency lists can com-
pete with adjacency matrices and node-link diagrams
for certain tasks and thus confirms our hypothesis.
They are especially suitable for the dynamic weighted
graph scenario in the study; we therefore focus on
this scenario in our case studies (Section 6). They also
provide the only visual representation for a fast and
accurate completion of the second task related to the
distribution of the number of links. Furthermore, it
is also interesting to see that adjacency lists exhibit
low error rates in the first task despite their color-
based link representation. Another surprising result
is that adjacency matrices enable the fastest answer
times for the third task related to weights. Finally,
the results show that the participants required only
a short explanation of the concept of adjacency lists
to perform all tasks with good accuracy. Hence, the
concept seems to be suitable for practical usage.

The results are also reflected by the ratings of the
participants. They rated visual adjacency lists on aver-
age between 1 and 2 for Tasks 2 to 4. Only for Task 1,
where the existence of links between nodes had to
be determined, the average rating was around 3. All
ratings from the questionnaire are documented in
detail in the supplemental material for this paper.

6 CASE STUDIES

We compare our technique in two case studies with
adjacency matrices as a common visualization tech-
nique for graphs. To support the comparison, we start
with a description of some of the possible visual
patterns in our visualization. Additionally, we provide
a detailed step-by-step analysis of the data, further
results, and additional data sets for the second case
study in the supplemental material for this paper.

6.1 Visual Patterns
Analyzing the graphs requires the detection of vi-
sual patterns and signatures. Besides clusters in gen-
eral [43], typical patterns in dynamic data include
trends, periodicities, shifts, and anomalies in the
graph structure over time [5].

Figure 14 shows some of the important patterns that
can occur in visual adjacency lists. For the normal
layout (Figure 14(a)), we exemplify patterns for the
vertical weight mapping (see Section 3.4): Clusters
are visible as patterns of nearby colors of the color
map (see also Figure 5). Asymmetries with respect to
incoming and outgoing links can appear in the link
distribution or the weights of links. Finally, links and
their weights can vary over time in dynamic graphs.
For horizontal weight mapping, patterns known from
bar charts can appear, e.g., outliers with very large
or small bars (see, e.g., Figure 15(b)). However, for a
strongly uneven weight distribution, the link structure
is less visible than for vertical weight mapping.

The Gantt layout (Figure 14(b)) emphasizes tempo-
ral dynamics of the graph. Therefore, most patterns
result from changes in the graph. Links with equal
time spans create a temporal cluster. Links can recur
after they disappeared and a single node can also have
a sequence of links to different nodes. Finally, a single
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Fig. 14: Typical patterns in visual adjacency lists with (a) normal
layout and vertical weight mapping, and with (b) Gantt layout.

node may have multiple incoming links but only a
single outgoing link and vice versa.

6.2 Migration Data
The first dynamic graph represents the worldwide mi-
gration of people. This is a dense and weighted graph
with 226 nodes, 34,968 links on average per time step
(16,485 links minimum, 45,449 links maximum), and
5 time steps. Every time step contains the migration
rates for a decade, beginning from 1960. The weights
cover a huge value range, from 1 to 9,367,910.

Migration data can be used to draw conclusions
about political and social conditions. In this context,
trends and anomalies in the data are of interest. In
Figure 15(a), we can see, e.g., that Belarus, Ukraine,
and the Russian Federation had immigration only
from a few different countries in the early decades.
This changed in the last decade for Ukraine and the
Russian Federation. A reason for this could be the end
of the Cold War and changes in the politics of these
countries. Such a connectivity analysis can be better
performed with the vertical weight representation (see
Section 3.4) because it is less affected by the weights.
We can, e.g., detect cluster patterns in the marked area
(black box) that are asymmetric with respect to incom-
ing and outgoing links. A red cluster exists for the
outgoing links. This cluster is missing for incoming
links; only in the last time step, a smaller red cluster
appears. Hence, for this part of Asia, African countries
were more an emigration target than an immigration
source. Furthermore, outgoing links are quite constant
over time, whereas the structure of incoming links
changes much. These countries as well became more
attractive for immigration over the decades.

The visual adjacency list with horizontal weight
mapping (Figure 15(b)) provides a view on aggre-
gated weights and is strongly influenced by the high
value range of the weights. Therefore, it allows only
the analysis of the countries with high migration rates.

For example, we can see a cluster structure in the
marked area: this part of Europe had immigration
mainly from other European countries. Furthermore,
we can compare the migration rates and analyze
their trend, e.g., immigration into the U.S. is highest,
especially at later time steps. We can also see due to
the color mapping that the distribution of the home
countries was changing and that Mexico dominated in
the last decade. Another example is the tremendous
increase of emigration from Bangladesh in the third
decade, mainly to India.

Zooming-in provides a detailed view on the migra-
tion rates of single countries. Vertical weight mapping
reveals, e.g., the following details: The immigration
from Asia to the Netherlands in this time step was
mainly from Indonesia, whereas the immigration from
European countries was more uniformly distributed
(Figure 15(d)). Spain had no immigration from Asia
in the first decade (Figure 15(e)). Moreover, Morocco
was the only African country from which people
immigrated to Spain; their number is comparable to
the number of immigrants from Germany. With hori-
zontal weight mapping, we can see that Algeria had
higher emigration than Egypt in the beginning (Fig-
ure 15(f)); this changed in the last two decades. The
color mapping additionally shows that people from
Algeria emigrated mainly to Europe, while Asia was
the primary destination of emigration from Egypt.

The adjacency matrix (Figure 16) provides insights
into the connectivity of the graph and clusters in the
link structure. For example, clusters along the diago-
nals can be seen, i.e., much migration occurred inside
continents. However, it is difficult to sum up or com-
pare weights. The usage of color for weight encoding
allows us only to detect larger differences between
weights. Although, e.g., the high immigration rates
of the U.S. are visible, it is hard to extract that this
is the number one immigration country and their
immigration rates increased much over the years.

In summary, visual adjacency lists provide different
views on migration rates, including their temporal
evolution. With horizontal weight mapping, a view
on aggregated migration rates is provided, whereas
vertical weight mapping allows a closer look on the
country distribution. With adjacency matrices, it is dif-
ficult to obtain the total migration of single countries
or track the changes in migration rates over time.

6.3 Visualization Workflow

This case study analyzes a visualization workflow
created and modified in VisTrails [47]. VisTrails allows
users to build custom visualizations by combining
modules in a visualization workflow. Since the focus
of VisTrails lies on provenance, all user modifications
on the workflow are logged and stored. We have
extracted the evolution of such a visualization work-
flow as a dynamic graph. Our example is a sparse
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Fig. 15: Visual adjacency lists for the migration graph. The graph can be visualized with (a) vertical weight representation or (b) horizontal
weight representation. (c) A hierarchical color map is used, with different colors for the continents, and changing brightness and saturation
for the countries of the same continent. (d)–(f) Zooming-in allows us to analyze and compare the migration rates of individual countries.
The horizontal weight mapping is linear, whereas the vertical weight representation uses a non-linear mapping. The shown info boxes are
displayed on mouse interaction, the numbers in brackets are the weights of the links (in this example the number of migrating people).

(a) (b) (c) (d)

Fig. 16: Adjacency matrices for the migration graph. (a) The five time steps are shown from left to right with (b) a color map filtering out low
weighted links. The immigration rates of the U.S. are marked in the last time step. (c) The first time step is shown with (d) the second color
map. Low weighted links are not filtered and a better view on the connectivity is provided. The same non-linear weight mapping is used as in
Figure 15. The color maps were taken from the set of sequential, colorblind safe, and print friendly color maps of ColorBrewer [46].

graph with 61 nodes, 33 links in average per time
step (2 links minimum, 53 links maximum), and 126
time steps. Every time step represents a modification
of the workflow by the user. In this example, the user
created and modified a combined visualization of a
3D scalar and a 3D vector field.

Analyzing the link structure, which represents data
flow in this context, provides insight into user be-
havior and the architecture of the underlying system.
Persistent links, e.g., build the backbone of the custom
visualization and temporal clusters indicate a direct
relation of links and the respective modules. Trial
and error behavior of the user typically results in
shortly existing links and applying the visualization to

different data sources creates a sequential link pattern.

Applying the visual adjacency list with normal
layout to the dynamic graph of the visualization
workflow results in a visualization with large hori-
zontal extent due to the large number of time steps
(Figure 17). Therefore, displaying the entire data set
at once provides only an overview of the graph and
its connectivity. For example, we can see that this
is a very sparse graph, most modules have only
one or two connections. Patterns and outliers can be
detected, e.g., the filtering module is connected only
to a single module for a rather short time range,
but analyzing individual time steps is difficult. This
requires zooming-in and allows us to see, e.g., the
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Fig. 17: Visual adjacency list for the visualization workflow. Node order and color coding consider the visualization pipeline (see Figure 18(b)).
An example area is shown in an enlarged display.
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Fig. 18: Visual adjacency list with Gantt layout for the visualization workflow. (a) The full data set is visualized. Areas of interest are marked
with numbers. (b) The nodes are ordered and color coded with respect to their classification in the visualization pipeline by Haber and
McNabb [39]. Nodes of the same classification are ordered according to the time the respective modules are created and the brightness of
their color is changed to visually separate them.

Fig. 19: Adjacency matrices for the visualization workflow. The image shows the first 12 of 126 time steps of the data set from left to right.
The axes are ordered and colored in the same way as the node axis of the visual adjacency list (Figure 18).

minimum and maximum number of links as shown
in the enlarged area. However, it is still difficult to
determine the time spans of links because they are
not aligned and can only be separated by their color.

The Gantt layout results in a more compact vi-
sualization (Figure 18). It does not only provide an
overview of the entire data set but also shows details
without zooming, e.g., temporal clusters and outliers
can be detected. Furthermore, the time spans of links
and the temporal evolution of the connectivity can be
analyzed. We can see, among other things, the follow-
ing interesting areas marked in the visualization:

1) The sequential connection pattern. The user
probably tried out different modules as data
source for this module.

2) These links exist only for a few time steps and
the reconnection of a single link is visible. This
can indicate trial-and-error behavior of the user.

3) A sequence of connections and partly multiple
inputs, while there is only a single outgoing
link for almost the full time range. Hence, this
module processes data from changing sources
but always provides the results to the same

module. The module seems to be important for
the basic visualization setup.

4) Two temporal clusters; the upper cluster consists
only of links from the category “display”. These
modifications of the visualization persist for
longer time spans and involve several modules.

In contrast, the adjacency matrix visualization has
high spatial requirements in a side-by-side view (Fig-
ure 19). It is therefore hard to obtain an overview
of a large time range. Hence, time-related tasks, e.g.,
analyzing time spans and detecting temporal clusters,
are difficult. However, the matrix representation has
its advantages for the spatial analysis of the link
structure and the detection of spatial clusters.

In summary, visual adjacency lists with normal
layout can provide an overview of the visualization
workflow, but a detailed analysis requires zooming.
The Gantt layout has a time-aligned representation
of links and therefore improves the analysis of time
spans and the detection of temporal clusters. The
adjacency matrix is more suitable for the analysis of
the spatial link structure than for a temporal analysis.
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7 DISCUSSION

The following discussion is based on the results of
our user study, the case studies, and general criteria
like scalability, compactness, and visual clutter [12].
Table 1 summarizes the discussion for key aspects.

7.1 Advantages
First, even though color coding for node correspon-
dence is perceptually less accurate than geometric
visual mapping by lines (i.e., links in node-link di-
agrams), some tasks benefit from the asymmetric
mapping of links as the user study and case studies
show. This is the case for tasks with asymmetric
characteristics, i.e., tasks where it is not important to
identify target nodes, like Tasks 2–4 in the user study.

Second, like adjacency matrices, our visualization
is not cluttered: there are no overlapping visual el-
ements. Generating the layout does neither require
high computational effort nor complex algorithms.
This can be the case for other graph visualization
techniques such as node-link diagrams.

Furthermore, the asymmetric mapping of links re-
sults in many cases in a more space-efficient visual
representation than adjacency matrices. Especially in
the case of sparse graphs, our approach results in
a very compact visualization (see Section 6.3). This
does not only improve the scalability but also allows
a faster recognition of certain aspects of the graph,
e.g., which nodes have the largest or smallest number
of links. The reduced space requirements are also
advantageous for the visualization of dynamic graphs.

In the case of weighted graphs, using the size of the
node elements to represent weights (see Section 3.4)
allows easy comparison of weights, similar to bar
charts—and unlike adjacency matrices. Furthermore,
if the weights are represented by the width of node
elements, the sum over all weights of a node is di-
rectly visible. Our user study (see Section 5) confirms
the suitability of adjacency lists for tasks related to
weights, especially in the case of dynamic graphs.

Our approach can directly handle multiple occur-
rences of the same link (multigraphs, see Figure 20).
Node-link diagrams and adjacency matrices have to
be extended for this case.

Visual adjacency lists can be easily transformed into
an adjacency matrix visualization and vice versa (see
Figure 2). When both methods are used, the transition

TABLE 1: Comparison of graph representations.

Aspects Adj. List Adj. Matrix Node-Link

asymmetric tasks + o -
clutter-free + + -
space-efficient + o o
weight encoding + o -
multigraphs + o o
cluster detection o + +
following paths - o +
dense graphs - + -
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B 
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A A A A D 

Fig. 20: Handling of multigraphs. The method can be directly applied
to multigraphs: multiple links (links from “B” to “A” in this example)
appear with multiple node elements.
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Fig. 21: Issues with cluster detection and following paths. (a) The
clusters C1 and C2 are both clearly visible in the adjacency matrix
(left). In the corresponding adjacency list (right, see Figure 2), only
C2 remains clearly visible. Cluster C1 is distorted because the lower
part is “blocked” by C2. (b) Following a path in the adjacency list
requires one to jump between the link lists and the corresponding
positions on the node axis. In this example, a path from “A” to “A”
over “D” and “B” is followed.

between them can be shown, e.g., by smooth anima-
tion. This may provide further insight or support the
understanding of the visualization.

Some of the properties of visual adjacency lists can
be derived from the underlying concept of adjacency
lists as data structures. The complexity of graph-
related tasks [43] can be derived to some extent from
the computational complexity of adjacency lists as
memory layout. Topology-based tasks related to direct
connections are linear in the number of links of the
respective nodes. In the case of adjacency matrices,
these tasks are linear in the number of nodes, i.e., the
maximum number of possible links. The same holds
for attribute-based tasks related to links. Attribute-
based tasks related to nodes are linear in the number
of nodes for both adjacency list and matrix.

7.2 Disadvantages
Our approach also exhibits several drawbacks. While
some tasks benefit from the asymmetric mapping of
links, there also tasks that become more difficult.

The detection of clusters (see Figure 21(a)) and other
graph structures can be difficult. Especially in large
graphs, the color coding may hinder the recognition
of nearby clusters and small structures (see Figure 5).
One approach to reducing this problem may be a
hybrid representation exploiting both concepts, adja-
cency lists and matrices (see Figure 2). For example,
clusters can be shifted closer to the node axis as long
as they do not break up.

Next, browsing tasks or topology-based tasks re-
lated to indirect connections [43] that require one to
follow paths are time-consuming (see Figure 21(b)).
Our user study shows (see Section 5) that tasks on di-
rect connections can already be quite time-consuming.
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One cannot directly go to a connected node, like it is
the case in node-link diagrams; the node axis has to
be scanned for the respective entry. Following several
links requires one to jump between the node axis and
the link list back and forth. There are similar problems
in visualizations with adjacency matrices [31]. The
usage of adequate interaction techniques can improve
the handling of paths, e.g., by highlighting possible
paths after selecting a specific node.

In the case of large graphs, adjacency lists provide
only an overview of large scale structures (see Fig-
ure 4); small scale details are hardly visible. Aggre-
gation (see Figure 6) and interaction techniques can
alleviate these issues.

Similar to adjacency matrices, the ordering inside
the node and link axes is flexible and impacts the
result. Adjacency lists are even less restrictive than
matrices: the ordering along the link axis does not
have to be identical in each row. This flexibility allows
us to better adapt the visualization to the tasks and
data (Section 3.3). However, more parameter adjust-
ment may be required to create good visualizations.

7.3 Application Guidelines
For sparse dynamic graphs, the Gantt layout is typ-
ically a better choice due to its representation of
time spans. For all other cases, the normal layout
is recommended. In the case of weighted graphs,
horizontal weight mapping is good for tasks where
large weights or the sum of all weights are in the
focus. If the connectivity of the graph is of interest or
the weights of individual nodes should be analyzed,
vertical weight mapping is recommended.

8 CONCLUSION AND FUTURE WORK

Our concept can be applied to graphs with any kind
of characteristics, but mainly graphs (e.g., sparse dy-
namic graphs like workflows) and tasks (e.g., analysis
of link distribution) with asymmetric characteristics
benefit from it as the results of our user study show.

Like the underlying concept of adjacency lists, our
visualization is space-efficient. This results in a com-
pact graph representation without the need for a
complex layout algorithm. Furthermore, the represen-
tation of links requires only one spatial dimension.
This allows a flexible usage of spatial position and
extent; there are different ways to represent weights
and it is also possible to create visualizations for
dynamic graphs similar to Gantt charts. These vari-
ants provide different insight and help analyze trends,
detect temporal clusters and outliers, and show the
evolution of connectivity and weights. Hence, espe-
cially dynamic graphs benefit from the characteristics
of visual adjacency lists. We therefore see them as an
addition to the tool set for graph visualization.

However, it is clear that not all tasks and graphs
benefit from the presented method because there are

also drawbacks, e.g., regarding cluster detection and
the handling of paths. Reducing these problems and
other open questions belong to future work. Aug-
menting the link list with arrows or curves could
improve path-related tasks. A hybrid representation
combining list and matrix visual metaphors may
improve the detection of clusters. Further research
will address interaction techniques to improve the
analysis of very large graphs, and extensions of the
concept that help follow paths in graphs. In the case
of large graphs, appropriate aggregation methods and
schemes to compute the color of pixels that represent
multiple nodes are of importance. Other layouts for
the graph and the time steps could also be explored,
e.g., radial approaches. An improved representation
of weights with a large value range is also of interest.
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can it facilitate?” International Journal on Human-Computer Stud-
ies, vol. 57, no. 4, pp. 247–262, 2002.

[5] M. Burch, C. Vehlow, F. Beck, S. Diehl, and D. Weiskopf, “Par-
allel edge splatting for scalable dynamic graph visualization,”
IEEE Trans. Visualizations and Comp. Graphics, vol. 17, no. 12,
pp. 2344–2353, 2011.

[6] J. S. Yi, N. Elmqvist, and S. Lee, “TimeMatrix: Analyzing
temporal social networks using interactive matrix-based visu-
alizations,” International Journal of Human Computer Interaction,
vol. 26, no. 11&12, pp. 1031–1051, 2010.

[7] S. Diehl and C. Görg, “Graphs, they are changing,” in Proceed-
ings of Graph Drawing, 2002, pp. 23–31.

[8] C. Erten, P. J. Harding, S. G. Kobourov, K. Wampler, and G. V.
Yee, “Graphael: Graph animations with evolving layouts,” in
Proceedings of Graph Drawing, 2003, pp. 98–110.

[9] G. Kumar and M. Garland, “Visual exploration of complex
time-varying graphs,” IEEE Trans. Visualization and Comp.
Graphics, vol. 12, no. 5, pp. 805–812, 2006.

[10] Y. Frishman and A. Tal, “Online dynamic graph drawing,”
IEEE Trans. Visualization and Comp. Graphics, vol. 14, no. 4, pp.
727–740, 2008.

[11] Y.-Y. Lee, C.-C. Lin, and H.-C. Yen, “Mental map preserving
graph drawing using simulated annealing,” in Proc. of Asia-
Pacific Symposium on Inf. Visualisation, 2006, pp. 179–188.

[12] F. Beck, M. Burch, and S. Diehl, “Towards an aesthetic dimen-
sions framework for dynamic graph visualisations,” in Proc.
of the Int’l Conf. on Inform. Visualisation (IV), 2009, pp. 592–597.

[13] C. Bennett, J. Ryall, L. Spalteholz, and A. Gooch, “The aesthet-
ics of graph visualization,” in Proc. of Computat. Aesthetics in
Graphics, Visualization, and Imaging, 2007, pp. 57–64.

[14] H. C. Purchase, “Metrics for graph drawing aesthetics,” Journal
of Vis. Lang. and Computing, vol. 13, no. 5, pp. 501–516, 2002.

[15] C. Ware, H. C. Purchase, L. Colpoys, and M. McGill, “Cogni-
tive measurements of graph aesthetics,” Information Visualiza-
tion, vol. 1, no. 2, pp. 103–110, 2002.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2014.2322594

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



14

[16] K. Misue, P. Eades, W. Lai, and K. Sugiyama, “Layout adjust-
ment and the mental map,” Journal of Vis. Lang. and Computing,
vol. 6, no. 2, pp. 183–210, 1995.

[17] S. C. North, “Incremental layout in DynaDAG,” in Proceedings
of Graph Drawing, 1995, pp. 409–418.

[18] A. Sallaberry, C. Muelder, and K.-L. Ma, “Clustering, visualiz-
ing, and navigating for large dynamic graphs,” in Proceedings
of Graph Drawing, 2013, pp. 487–498.

[19] Y. Hu, S. Kobourov, and S. Veeramoni, “Embedding, clustering
and coloring for dynamic maps,” in Proceedings of the IEEE
Pacific Visualization Symposium (PacificVis), 2012, pp. 33–40.

[20] S. Hadlak, H. Schumann, C. H. Cap, and T. Wollenberg, “Sup-
porting the visual analysis of dynamic networks by clustering
associated temporal attributes,” IEEE Trans. Visualization and
Comp. Graphics, vol. 19, no. 12, pp. 2267–2276, 2013.

[21] W. Aigner, S. Miksch, H. Schumann, and C. Tominski, Visual-
ization of Time-Oriented Data. Springer, 2011.

[22] W. Aigner, S. Miksch, B. Thurnher, and S. Biffl, “PlanningLines:
novel glyphs for representing temporal uncertainties and their
evaluation,” in Proceedings of the IEEE Symposium on Information
Visualization, 2005, pp. 457–463.

[23] E. R. Tufte, The Visual Display of Quantitative Information.
Graphics Press, 1986.

[24] T. Wang, C. Plaisant, B. Shneiderman, N. Spring, D. Rose-
man, G. Marchand, V. Mukherjee, and M. Smith, “Temporal
summaries: Supporting temporal categorical searching, aggre-
gation and comparison,” IEEE Trans. Visualization and Comp.
Graphics, vol. 15, no. 6, pp. 1049–1056, 2009.

[25] M. Monroe, R. Lan, H. Lee, C. Plaisant, and B. Shneiderman,
“Temporal event sequence simplification,” IEEE Trans. Visual-
ization and Comp. Graphics, vol. 19, no. 12, pp. 2227–2236, 2013.

[26] H. L. Gantt, Work, Wages, and Profits. The Engineering
Magazine Co., 1913.

[27] D. Archambault, H. Purchase, and B. Pinaud, “Animation,
small multiples, and the effect of mental map preservation in
dynamic graphs,” IEEE Trans. Visualization and Comp. Graphics,
vol. 17, no. 4, pp. 539–552, 2011.

[28] M. Greilich, M. Burch, and S. Diehl, “Visualizing the evolution
of compound digraphs with TimeArcTrees,” Computer Graphics
Forum, vol. 28, no. 3, pp. 975–982, 2009.

[29] U. Brandes and S. R. Corman, “Visual unrolling of network
evolution and the analysis of dynamic discourse?” Information
Visualization, vol. 2, no. 1, pp. 40–50, 2003.

[30] S. Rufiange and M. J. McGuffin, “Diffani: Visualizing dynamic
graphs with a hybrid of difference maps and animation,” IEEE
Trans. Visualization and Comp. Graphics, vol. 19, no. 12, pp. 2556–
2565, 2013.

[31] M. Ghoniem, J. D. Fekete, and P. Castagliola, “A comparison
of the readability of graphs using node-link and matrix-
based representations,” in Proceedings of the IEEE Symposium
on Information Visualization, 2004, pp. 17–24.

[32] J. Bae and B. Watson, “Developing and evaluating quilts for
the depiction of large layered graphs,” IEEE Trans. Visualization
and Comp. Graphics, vol. 17, no. 12, pp. 2268–2275, 2011.

[33] E. M. Kornaropoulos and I. G. Tollis, “Dagview: an approach
for visualizing large graphs,” in Proceedings of Graph Drawing,
2013, pp. 499–510.

[34] M. Burch, F. Beck, and S. Diehl, “Timeline Trees: visualizing
sequences of transactions in information hierarchies,” in Pro-
ceedings of Advanced Visual Interfaces, 2008, pp. 75–82.

[35] M. Burch and S. Diehl, “TimeRadarTrees: Visualizing dynamic
compound digraphs,” Computer Graphics Forum, vol. 27, no. 3,
pp. 823–830, 2008.

[36] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms. The MIT Press, 2009.

[37] W. S. Cleveland and R. McGill, “An experiment in graphi-
cal perception,” International Journal of Man-Machine Studies,
vol. 25, no. 5, pp. 491–500, 1986.

[38] J. Mackinlay, “Automating the design of graphical presenta-
tions of relational information,” ACM Transactions on Graphics,
vol. 5, no. 2, pp. 110–141, 1986.

[39] R. B. Haber and D. A. McNabb, “Visualization idioms: A
conceptual model for scientific visualization systems,” in Visu-
alization in Scientific Computing, G. M. Nielson, B. Shriver, and
L. Rosenblum, Eds. IEEE Comp. Soc. Press, 1990, pp. 74–93.

[40] N. Henry, “Exploring social networks with matrix-based rep-
resentations,” Ph.D. dissertation, Université Paris Sud, France,
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